
 TB3218
 Getting Started with Configurable Custom Logic (CCL)

Introduction

Author: Cristian Pop, Microchip Technology Inc.

The Configurable Custom Logic (CCL) is a programmable logic peripheral that allows the on-chip creation of the logic
functions for Microchip tinyAVR® 0- and 1-series, megaAVR® 0-series, and AVR® DA devices. The CCL provides
programmable, combinational and sequential logic that operates independently of the CPU execution. It can be
connected to a wide range of internal and external inputs such as device pins, events, or other internal peripherals
and can serve as a “glue logic” between the device peripherals and external devices.

This technical brief explains how to use the CCL to implement the following functions:

• Logic AND Gate:
Uses CCL to implement a simple logic AND gate.

• State Decoder:
Shows how to use CCL combinational logic to detect a specific state of the external signals.

• SR Latch:
Uses internal CCL sequential logic to create an SR latch.

Note:  For each of the use cases described in this document, there are two code examples: One bare
metal developed on ATmega4809, and one generated with MPLAB® Code Configurator (MCC) developed on
AVR128DA48.

View the ATmega4809 Code Example on GitHub
Click to browse repository

View the AVR128DA48 Code Example on GitHub
Click to browse repository

Note:  In addition to the use cases mentioned above, this document provides advanced examples for the CCL
peripheral, as described in 6. Advanced Examples. These are generated with MCC and developed on AVR128DA48.

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 1

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-ccl-studio
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-ccl-mplab-mcc

Table of Contents

Introduction...1

1. Relevant Devices.. 3

2. Overview... 6

3. Logic AND Gate.. 8

4. State Decoder..11

5. SR Latch... 14

6. Advanced Examples... 17

7. References..19

8. Revision History.. 20

9. Appendix... 21

Microchip Information...24

The Microchip Website..24
Product Change Notification Service.. 24
Customer Support... 24
Microchip Devices Code Protection Feature...24
Legal Notice.. 24
Trademarks... 25
Quality Management System.. 26
Worldwide Sales and Service..27

 TB3218

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 2

1. Relevant Devices
This section lists the relevant devices for this document. The following figures show the different family devices,
laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin-compatible and
provide the same or more features. Downward migration on tinyAVR® 1-series devices may require code
modification due to fewer available instances of some peripherals.

• Horizontal migration to the left reduces the pin count and, therefore, the available features
• Devices with different Flash memory sizes typically also have different SRAM and EEPROM

Figure 1-1. tinyAVR® 0-series Overview

2 KB

8
Pins

ATtiny402

20 24 14

ATtiny202

ATtiny804 ATtiny806 ATtiny807

ATtiny404 ATtiny406

ATtiny204

4 KB

8 KB

Flash

16 KB ATtiny1604 ATtiny1606 ATtiny1607

Figure 1-2. tinyAVR® 1-series Overview

8
Pins

20 24 14

8 KB

Flash

16 KB

32 KB

4 KB

2 KB

ATtiny3216 ATtiny3217

ATtiny1614 ATtiny1616 ATtiny1617

ATtiny412

ATtiny212

ATtiny414 ATtiny416 ATtiny417

ATtiny214

ATtiny814 ATtiny816 ATtiny817

 TB3218
Relevant Devices

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 3

Figure 1-3. tinyAVR® 2 Family Overview

Pins

Flash

ATtiny824

ATtiny1624

ATtiny424

ATtiny1626 ATtiny1627

ATtiny826 ATtiny827

ATtiny426 ATtiny4274 KB

20 24 14

8 KB

16 KB

32 KB ATtiny3224 ATtiny3226 ATtiny3227

Figure 1-4. megaAVR® 0-series Overview

Pins

Flash

ATmega1608

ATmega3208

ATmega808

ATmega3208 ATmega3209

ATmega1608 ATmega1609

ATmega808 ATmega809

28 40 48 32

ATmega4808 ATmega4808 ATmega4809 ATmega4809

8 KB

16 KB

32 KB

48 KB

Figure 1-5. AVR® DA Family Overview

Pins

Flash

AVR64DA28

AVR128DA28

AVR32DA28

AVR128DA32 AVR128DA48 AVR128DA64

AVR64DA32 AVR64DA48 AVR64DA64

AVR32DA32 AVR32DA4832 KB

28 48 64 32

64 KB

128 KB

 TB3218
Relevant Devices

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 4

Figure 1-6. AVR® DB Family Overview

Pins

Flash

AVR64DB28

AVR128DB28

AVR32DB28

AVR128DB32 AVR128DB48 AVR128DB64

AVR64DB32 AVR64DB48 AVR64DB64

AVR32DB32 AVR32DB48

28 48 64 32

32 KB

64 KB

128 KB

 TB3218
Relevant Devices

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 5

2. Overview
The CCL peripheral has one pair of Look-up Tables (LUTs) on tinyAVR 0- and 1-series, two pairs of LUTs on
megaAVR 0-series, and three pairs of LUTs on AVR DA devices. Each LUT consists of three inputs with a truth
table, a synchronizer, a filter, and an edge detector. Each LUT can generate an output as a user-programmable logic
expression with three inputs; any device with CCL will have a minimum of two LUTs available. These inputs can be
individually masked. The output can be generated from the combinatorial inputs and be filtered to remove spikes. An
optional sequential logic module can be enabled. The inputs to the sequential module are individually controlled by
two independent, adjacent LUT outputs (LUT0/LUT1), enabling complex waveform generation.

Truth Table
It is possible to create simple logic blocks (AND, OR, NAND, NOR, XOR) or custom ones using the truth table up to
three inputs on each of the LUTs. When more than three inputs are required, multiple connected LUTs are used to
create logic gates.

To define a combinational specific logic function, the CCL module uses truth tables. A truth table shows how the logic
circuit responds to various combinations of three inputs. Each combination of the Input (IN[2:0]) bits corresponds to
one bit in the respective TRUTHn register. Below are some examples of how to create some common logic gates
using three inputs.

Figure 2-1. AND Logic

AND

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
1

0x80

LUTn IN[2]

LUTn OUT

To get a HIGH(1) output from an AND gate, all inputs must be HIGH(1). Looking at the truth table above, only
TRUTH[7] fulfills this requirement if all three inputs are used. This means that TRUTH[7] must be HIGH(1) and the
rest must be LOW(0), resulting in the hex value of 0x80 to be used in the TRUTHn register.

CCL.TRUTHn = 0x80;

Figure 2-2. XOR Gate

XOR

LUTn outLUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

0x96

LUTn IN[2]

LUTn OUT

 TB3218
Overview

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 6

To get a HIGH(1) output from an XOR gate, the number of HIGH(1) inputs must be odd. Looking at the truth table
above, TRUTH[1], TRUTH[2], TRUTH[4], and TRUTH[7] fulfill this requirement. This means that these bits must be
HIGH(1) and the rest must be LOW(0), resulting in the hex value of 0x96 to be used in the TRUTHn register.

CCL.TRUTHn = 0x96;

When any of the three inputs are not needed, the unused input will be masked (tied low). Only the TRUTH bits where
the masked input is ‘0’ can be used when looking at the truth table to determine how the bits need to be set to get the
wanted logic. Below are some examples of where various inputs are masked.

Figure 2-3. Two-Input AND Gate, IN[0] Masked

AND

LUTn out

LUTn IN[1]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
0
0
0
1
0

0x40

LUTn IN[2]

LUTn OUT

Figure 2-4. Two-Input XOR Gate, IN[2] Masked

XOR

LUTn out

LUTn IN[1]

LUTn IN[0]

IN[0]IN[1]IN[2]
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
0
0
0
0

0x06

LUTn OUT

Some applications require more than three logic inputs. The CCL module provides the option to link internally the
next LUTs direct output to a LUT input. For example, if LUT0 and LUT1 are used to create a logic function, the LUT1
output can be connected to the LUT0 input internally.

Using the CCL eliminates the need for external logic, reduces Bill of Materials (BOM) cost, and enables the CPU to
handle time-critical parts of the application more efficiently.

 TB3218
Overview

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 7

3. Logic AND Gate
The following example shows how to configure and use CCL LUT1 to implement an AND gate with three inputs.

Figure 3-1. Using CCL as Logic AND Gate

The first step is to select the I/O pins as inputs using the INSELx[3:0] bits from the LUT Control (LUTnCTRLB and
LUTnCTRLC) registers.
Figure 3-2. LUTn Control B Register

Bit 7 6 5 4 3 2 1 0

INSEL1[3:0] INSEL0[3:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Figure 3-3. LUTn Control C Register

Bit 7 6 5 4 3 2 1 0

INSEL2[3:0]

Access R/W R/W R/W R/W

Reset 0 0 0 0

The table below summarizes the INSEL[3:0] options for all inputs.

 TB3218
Logic AND Gate

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 8

Figure 3-4. CCL Input Selection Options

Value Input Source INSEL0 INSEL1 INSEL2

0x00 MASK None

0x01 FEEDBACK LUTn

0x02 LINK LUT(n+1)

0x03 EVENT0 Event input source 0

0x04 EVENT1 Event input source 0

0x05 IO IN0 IN1 IN2

0x06 AC AC0 OUT

0x07 -

0x08 USART USART0 TXD USART1 TXD USART2 TXD

0x09 SPI SPI0 MOSI SPI0 MOSI SPI0 SCK

0x0A TCA0 WO0 WO1 WO2

0x0B -

0x0C TCB TCB0 WO TCB1 WO TCB2 WO

Other -

This translates to the following code.

CCL.LUT1CTRLB = CCL_INSEL0_IO_gc | CCL_INSEL1_IO_gc;

CCL.LUT1CTRLC = CCL_INSEL2_IO_gc;

The next step is to configure the truth tables for LUT1 to generate the right combinational logic to implement an AND
gate on the selected pins. Thus, the truth table will have a value of 0x80.

CCL.TRUTH1 = 0x80;

The next step is to configure the output of the decoder, specifically, the I/O Port pin (PC3) in this example. This is
done by setting the OUTEN bit on the LUT0CTRLA register.

Figure 3-5. LUTn Control A Register
Bit 7 6 5 4 3 2 1 0

EDGEDET OUTEN FILTSEL[1:0] CLKSRC[2:0] ENABLE

Access R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

This translates to the following code:

CCL.LUT1CTRLA = CCL_OUTEN_bm;

By enabling the LUTn output on the I/O pin, the settings for the corresponding pin are overwritten. To enable the
decoding of the input sequence, the CCL and the used LUTs need to be enabled. That is done using the ENABLE bit
from the LUTnCTRLA register.

CCL.LUT1CTRLA |= CCL_ENABLE_bm;

To complete the setup, the CCL module needs to be enabled using a CCL Global Enable bit from the CTRLA register.

 TB3218
Logic AND Gate

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 9

Figure 3-6. CCL Control A Register
Bit 7 6 5 4 3 2 1 0

RUNSTDBY ENABLE

Access R/W R/W

Reset 0 0

CCL.CTRLA = CCL_ENABLE_bm;

Tip:  The full code example is also available in the Appendix section.

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MCC generated code example for AVR128DA48, with the same functionality as the one described in this section,
can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3218
Logic AND Gate

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 10

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-ccl-studio/tree/master/Logic_AND_Gate
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-ccl-mplab-mcc/tree/master/Logic_AND_Gate

4. State Decoder
The application may need to detect when a specific combination of signals (pattern) appears on the pins. By
combining logic gates, a simple state decoder for external signals can be implemented without involving the CPU.

Figure 4-1. Using the AVR® Microcontroller as a State Decoder

In this example, the CCL module will be used to decode the presence of the b’10110 pattern on the input pins.
LUT0 and LUT1, connected to the corresponding input pins, will be used.

The input selection from different input options is done using the INSELx[3:0] bits from the LUT Control (LUTnCTRLB
and LUTnCTRLC) registers, as shown in the following figures.

Figure 4-2. LUTn Control B Register
Bit 7 6 5 4 3 2 1 0

INSEL1[3:0] INSEL0[3:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Figure 4-3. LUTn Control C Register

Bit 7 6 5 4 3 2 1 0

INSEL2[3:0]

Access R/W R/W R/W R/W

Reset 0 0 0 0

The table below summarizes the INSEL[3:0] options for all inputs.

 TB3218
State Decoder

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 11

Figure 4-4. CCL Input Selection Options

Value Name Description

0x0 MASK None (masked)

0x1 FEEDBACK Feedback input

0x2 LINK Output from LUTn+1

0x3 EVENT0 Event input source 0

0x4 EVENT1 Event input source 1

0x5 IO I/O-pin LUTn-IN0

0x6 AC0 AC0 out

0x7 - Reserved

0x8 USART2 USART2 TXD

0x9 SPI0 SPI0 SCK

0xA TCA0 TCA0 WO1

0xB - Reserved

0xC TCB2 TCB2 WO

Other - Reserved

For this example, two adjacent LUTs (LUT0 and LUT1) will be used, with the output of LUT1 connected to the LUT0
input (linked).

CCL.LUT0CTRLC = CCL_INSEL2_LINK_gc;

The other two inputs of LUT0 and all three inputs of LUT1 are connected to the I/O pins.

CCL.LUT0CTRLB = CCL_INSEL0_IO_gc | CCL_INSEL1_IO_gc;
CCL.LUT1CTRLB = CCL_INSEL0_IO_gc | CCL_INSEL1_IO_gc;

CCL.LUT1CTRLC = CCL_INSEL2_IO_gc;

The following step is to configure the truth tables for LUT0 and LUT1 to generate the right combinational logic to
detect b’10110 on the selected pins. The TRUTH1 table is used to decode the pattern for the Most Significant three
bits (b’10110).

CCL.TRUTH1 = 0x20;

LUT0 has as inputs two Least Significant bits from the input pattern (b’10110) and the decoded output of LUT1 on
the third input, resulting in binary sequence b’110 to be decoded. The value of the truth table, in this case, will be
0x40.

CCL.TRUTH0 = 0x40;

The next step is to configure the output of the decoder, specifically, the I/O PORT pin PA3 in this example. This is
done by setting the OUTEN bit on the LUT0CTRLA register.

 TB3218
State Decoder

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 12

Figure 4-5. LUTn Control A Register
Bit 7 6 5 4 3 2 1 0

EDGEDET OUTEN FILTSEL[1:0] CLKSRC[2:0] ENABLE

Access R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

This translates to the following code.

CCL.LUT0CTRLA = CCL_OUTEN_bm;

By enabling the LUTn output on the I/O pin, the settings for the corresponding pin are overwritten. To complete the
setup and the start decoding of the input sequence, the CCL and used LUTs need to be enabled. That is done using
the ENABLE bit from the LUTnCTRLA register.

CCL.LUT1CTRLA = CCL_ENABLE_bm;
CCL.LUT0CTRLA |= CCL_ENABLE_bm;

To complete the setup, the CCL module needs to be enabled using a CCL Global Enable bit from the CTRLA register.

Figure 4-6. CCL Control A Register
Bit 7 6 5 4 3 2 1 0

RUNSTDBY ENABLE

Access R/W R/W

Reset 0 0

CCL.CTRLA = CCL_ENABLE_bm;

Tip:  The full code example is also available in the Appendix section.

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MCC generated code example for AVR128DA48, with the same functionality as the one described in this section,
can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3218
State Decoder

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 13

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-ccl-studio/tree/master/State_Decoder
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-ccl-mplab-mcc/tree/master/State_Decoder

5. SR Latch
This section describes an application example that uses CCL combinational and sequential logic to implement an SR
latch. This functionality can be created using two adjacent LUTs (LUT0 and LUT1) connected through a sequential
logic block.
Figure 5-1. Using CCL to Implement an SR Latch

For Set and Reset signals, two pins are used as inputs for LUTs (I/O PORT pin PA1 and I/O PORT pin PC1). That
translates to the following code.

CCL.LUT0CTRLB = CCL_INSEL0_MASK_gc | CCL_INSEL1_IO_gc;
CCL.LUT0CTRLC = CCL_INSEL2_MASK_gc;
CCL.LUT1CTRLB = CCL_INSEL0_MASK_gc | CCL_INSEL1_IO_gc;
CCL.LUT0CTRLC = CCL_INSEL2_MASK_gc;

In this case, only the input selected for the Input signal needs to be considered when configuring the Truth register for
each LUT. For instance, if the signal is active-high and available on LUTn_IN[1], the Truth register will be set to 0x02.
If the input signal is active-low, which is the case for many evaluation kits, the Truth register will be set to 0x01. For
the selected example, the input signals are active-low, so the Truth register will be set to 0x01 for both LUTs.

CCL.TRUTH0 = 0x01;
CCL.TRUTH1 = 0x01;

The truth table output is a combinatorial function of the inputs. This may cause some short glitches when the inputs
change value. These glitches may not cause any problems, but if the LUT output is set to trigger an event, used as
input on a timer or similar, an unwanted glitch may trigger unwanted events and peripheral action. In removing these
glitches by clocking through the filters, the user will only get the intended output. Each Look-up Table (LUT) in the
CCL includes a filter that can be used to synchronize or filter the LUT output.

 TB3218
SR Latch

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 14

Figure 5-2. CCL Filter

D Q

R

D Q

R

D Q

R

D Q

R

FILTSEL

OUT

Input

CLK_MUX_OUT

A
B

C

D

CLR

G

The selection of the filter option is done by using the FILTSEL[1:0] bits from the LUTnCTRLA register.

Figure 5-3. CCL Filter Options

Value Name Description
0x0 DISABLE Filter disabled
0x1 SYNCH Synchronizer enabled
0x2 FILTER Filter enabled
0x3 - Reserved

CCL.LUT0CTRLA = CCL_FILTSEL_FILTER_gc;
CCL.LUT1CTRLA = CCL_FILTSEL_FILTER_gc;

The next step is to connect the LUTs through a sequential logic to create SR latch functionality. The bits in
SEQSEL0[3:0] from the Sequential Control (SEQCTRL0) register select the sequential configuration for LUT0 and
LUT1.

Figure 5-4. Sequential 1 Control 0 Register

Bits 3:0 – SEQSELn[3:0] : Sequential Selection bits
The bits in SEQSELn select the sequential configuration for LUT[2n] and LUT[2n+1].

Value Name Description
0x0 DISABLE Sequential logic is disabled
0x1 DFF D flip flop
0x2 JK JK flip flop
0x3 LATCH D latch
0x4 RS RS latch
Other - Reserved

Bit 7 6 5 4 3 2 1 0

SEQSELn[3:0]

Access R/W R/W R/W R/W

Reset 0 0 0 0

This translates to the following code:

CCL.SEQCTRL0 = CCL_SEQSEL0_RS_gc;

 TB3218
SR Latch

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 15

To complete the setup and enable the LUT0 output on the LUT0OUT pin (PA3), the used LUTs and CCL need to be
enabled.

CCL.LUT1CTRLA |= CCL_ENABLE_bm;
CCL.LUT0CTRLA |= CCL_ENABLE_bm | CCL_OUTEN_bm;
CCL.CTRLA = CCL_ENABLE_bm;

Tip:  The full code example is also available in the Appendix section.

View the ATmega4809 Code Example on GitHub
Click to browse repository

An MCC generated code example for AVR128DA48, with the same functionality as the one described in this section,
can be found here:

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3218
SR Latch

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 16

https://github.com/microchip-pic-avr-examples/atmega4809-getting-started-with-ccl-studio/tree/master/SR_Latch
https://github.com/microchip-pic-avr-examples/avr128da48-getting-started-with-ccl-mplab-mcc/tree/master/SR_Latch

6. Advanced Examples
This section consists of advanced use cases that use the CCL peripheral combined with other several peripherals.
These use cases are generated using MCC and are developed on AVR128DA48.

Manchester Encoder
This use case is an implementation of a Manchester encoder using Core Independent Peripherals (CIPs) by
following the interaction between CCL, USART and Event System peripherals. The raw data are received via serial
communication, encoded using a circuit composed of the CIPs mentioned above, and sent further through a single
data wire.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

Manchester Decoder
This use case is an implementation of a Manchester decoder using CIPs by following the interaction between CCL,
Event System, TCB and SPI peripherals. The encoded data are received through a single data wire. The NRZ
(Non-Return-to-Zero) signal and clock signal are recovered using the circuit composed of the CIPs mentioned above.
The resulting signals are routed to the SPI peripheral which reads the data. The decoded data are transmitted further
via serial communication.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

Bi-Phase Encoder
This project is an implementation of a Bi-phase encoder using CIPs by following the interaction between CCL, Event
System, SPI and USART peripherals. The raw data are received via serial communication, encoded using the circuit
composed of the CIPs mentioned above, and sent further through a single data wire.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

Bi-Phase Decoder
This project is an implementation of a Bi-phase decoder using CIPs by following the interaction between CCL, TCA,
TCB, USART, Event System and SPI peripherals. The encoded data are received through a single data wire. The
NRZ (Non-return-to-zero) signal and clock signal are recovered using the circuit composed of the CIPs mentioned
above. The resulting signals are routed to the SPI peripheral which reads the data. The decoded data is transmitted
further via serial communication.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3218
Advanced Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 17

https://github.com/microchip-pic-avr-examples/avr128da48-cnano-manchester-mplab-mcc/tree/master/Manchester_Encoder
https://github.com/microchip-pic-avr-examples/avr128da48-cnano-manchester-mplab-mcc/tree/master/Manchester_Decoder
https://github.com/microchip-pic-avr-examples/avr128da48-cnano-biphase-mplab-mcc/tree/master/Biphase_Encoder
https://github.com/microchip-pic-avr-examples/avr128da48-cnano-biphase-mplab-mcc/tree/master/Biphase_Decoder

Driving a Metronome
The use case consists of a circuit composed of CIPs, which is capable of creating the signals that drive a Switec
stepper motor as a metronome. It also adjusts the number of beats per minute of the metronome by reading an input
value provided by the user.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

SOS Sequence Generator
This use case consists of a circuit composed of CIPs, which operates with the involvement of the core only in the
initialization part and generates an SOS sequence signal.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

RGB Lighting with WS2812
This use case consists of a circuit composed of CIPs for interfacing the CCL and SPI peripherals with the WS2812
LED.

View the AVR128DA48 Code Example on GitHub
Click to browse repository

 TB3218
Advanced Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 18

https://github.com/microchip-pic-avr-examples/avr128da48-cnano-metronome-mplab-mcc
https://github.com/microchip-pic-avr-examples/avr128da48-cnano-sos-training-mcc
https://github.com/microchip-pic-avr-examples/avr128da48-cnano-ws2812-mplab-mcc

7. References
1. ATmega4809 product page: www.microchip.com/wwwproducts/en/ATMEGA4809
2. megaAVR® 0-series Family Data Sheet
3. ATmega809/1609/3209/4809 – 48-Pin Data Sheet megaAVR® 0-series
4. ATmega4809 Xplained Pro product page: https://www.microchip.com/developmenttools/ProductDetails/

atmega4809-xpro
5. AVR128DA48 product page: www.microchip.com/wwwproducts/en/AVR128DA48
6. AVR128DA48 Curiosity Nano Evaluation Kit product page: https://www.microchip.com/Developmenttools/

ProductDetails/DM164151
7. AVR128DA28/32/48/64 Data Sheet
8. Getting Started with the AVR® DA Family

 TB3218
References

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 19

https://www.microchip.com/wwwproducts/en/ATMEGA4809
https://ww1.microchip.com/downloads/en/DeviceDoc/megaAVR-0-series-Family-Data-Sheet-40002015C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmega809-1609-3209-4809-48-Pin-40002016C.pdf
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro
https://www.microchip.com/wwwproducts/en/AVR128DA48
https://www.microchip.com/Developmenttools/ProductDetails/DM164151
https://www.microchip.com/Developmenttools/ProductDetails/DM164151
http://ww1.microchip.com/downloads/en/DeviceDoc/AVR128DA28-32-48-64-DataSheet-DS40002183B.pdf
http://ww1.microchip.com/downloads/en/Appnotes/AN3429-Getting-Started-AVRDA-Family-DS00003429B.pdf

8. Revision History
Document Revision Date Comments

C 06/2022 Added AVR® DB and tinyAVR® 2 to relevant devices.

B 03/2021 Updated the GitHub repository links, the References section, the
use cases sections, and the use cases figures. Added the AVR®

DA Family Overview, Advanced Examples and Revision History
sections. Added MCC versions for each use case, running on
AVR128DA48. Other minor corrections.

A 05/2019 Initial document release.

 TB3218
Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 20

9. Appendix
Example 9-1. Logic AND Gate Code Example

#include <avr/io.h>

void PORT_init (void);
void CCL_init(void);

/**
 * \brief Initialize ports
 */
void PORT_init (void)
{
 PORTC.DIR &= ~PIN0_bm; //PC0 - LUT1 IN[0]
 PORTC.DIR &= ~PIN1_bm; //PC1 - LUT1 IN[1]
 PORTC.DIR &= ~PIN2_bm; //PC2 - LUT1 IN[2]

 PORTC.DIR |= PIN3_bm; //PC3 - LUT1 output
}

/**
 * \brief Initialize CCL peripheral
 */
void CCL_init(void)
{

//configure inputs for used LUTs
 CCL.LUT1CTRLB = CCL_INSEL0_IO_gc /* IO pin LUTn-IN0 input source */
 | CCL_INSEL1_IO_gc; /* IO pin LUTn-IN1 input source */
 CCL.LUT1CTRLC = CCL_INSEL2_IO_gc; /* IO pin LUTn-IN2 input source */

//Configure Truth Table
 CCL.TRUTH1 = 0x80; /* Truth 1: 128 */

//Enable LUT0 output on IO pin
 CCL.LUT1CTRLA = CCL_OUTEN_bm; /* Output Enable: enabled */

//Enable LUTs
 CCL.LUT1CTRLA |= CCL_ENABLE_bm; /* LUT Enable: enabled */

//Enable CCL module
 CCL.CTRLA = CCL_ENABLE_bm; /* Enable: enabled */
}

int main(void)
{
 PORT_init();
 CCL_init();
 while (1)
 {
 ;
 }
}

 TB3218
Appendix

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 21

Example 9-2. State Decoder Code Example

#include <avr/io.h>

void PORT_init (void);
void CCL_init(void);

/**
 * \brief Initialize ports
 */
void PORT_init (void)
{

 PORTA.DIR &= ~PIN0_bm; //PA0 - LUT0 IN[0]
 PORTA.DIR &= ~PIN1_bm; //PA1 - LUT0 IN[1]
 PORTC.DIR &= ~PIN0_bm; //PC0 - LUT1 IN[0]
 PORTC.DIR &= ~PIN1_bm; //PC0 - LUT1 IN[1]
 PORTC.DIR &= ~PIN2_bm; //PC0 - LUT1 IN[2]

 PORTA.DIR |= PIN3_bm; //PA3 - LUT0 output

}

/**
 * \brief Initialize CCL peripheral
 */
void CCL_init(void)
{

//configure inputs for used LUTs
 CCL.LUT0CTRLB = CCL_INSEL0_IO_gc /* IO pin LUTn-IN0 input source */
 | CCL_INSEL1_IO_gc; /* IO pin LUTn-IN1 input source */
 CCL.LUT0CTRLC = CCL_INSEL2_LINK_gc; /* Linked LUT input source */

 CCL.LUT1CTRLB = CCL_INSEL0_IO_gc /* IO pin LUTn-IN0 input source */
 | CCL_INSEL1_IO_gc; /* IO pin LUTn-IN1 input source */
 CCL.LUT1CTRLC = CCL_INSEL2_IO_gc; /* IO pin LUTn-IN2 input source */

//Configure Truth Tables
 CCL.TRUTH0 = 0x40; /* Truth 0: 64 */
 CCL.TRUTH1 = 0x20; /* Truth 1: 32 */

//Enable LUT0 output on IO pin
 CCL.LUT0CTRLA = CCL_OUTEN_bm; /* Output Enable: enabled */

//Enable LUTs
 CCL.LUT0CTRLA |= CCL_ENABLE_bm; /* LUT Enable: enabled */
 CCL.LUT1CTRLA = CCL_ENABLE_bm; /* LUT Enable: enabled */

//Enable CCL module
 CCL.CTRLA = CCL_ENABLE_bm; /* Enable: enabled */
}

int main(void)
{
 PORT_init();
 CCL_init();
 while (1)
 {
 ;
 }
}

 TB3218
Appendix

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 22

Example 9-3. SR Latch Code Example

#include <avr/io.h>

void PORT_init (void);
void CCL_init(void);

/**
 * \brief Initialize ports
 */
void PORT_init (void)
{

 PORTA.DIR &= ~PIN1_bm; //PA1 - LUT0 IN[1]
 PORTC.DIR &= ~PIN1_bm; //PC1 - LUT1 IN[1]

 PORTA.DIR |= PIN3_bm; //PA3 - LUT0 output

}

/**
 * \brief Initialize CCL peripheral
 */
void CCL_init(void)
{

//configure inputs for used LUTs
 CCL.LUT0CTRLB = CCL_INSEL0_MASK_gc /* LUTn-IN0 input masked */
 | CCL_INSEL1_IO_gc; /* IO pin LUTn-IN1 input source */
 CCL.LUT0CTRLC = CCL_INSEL2_MASK_gc; /* LUTn-IN2 input masked */

 CCL.LUT1CTRLB = CCL_INSEL0_MASK_gc /* LUTn-IN0 input masked */
 | CCL_INSEL1_IO_gc; /* IO pin LUTn-IN1 input source */
 CCL.LUT1CTRLC = CCL_INSEL2_MASK_gc; /* LUTn-IN2 input masked */

//Configure Truth Tables
 CCL.TRUTH0 = 0x01; /* Truth 0: 1 */
 CCL.TRUTH1 = 0x01; /* Truth 1: 1 */

// Configure filter
 CCL.LUT0CTRLA = CCL_FILTSEL_FILTER_gc; /* Enable filter*/
 CCL.LUT1CTRLA = CCL_FILTSEL_FILTER_gc; /* Enable filter*/

//Enable sequential logic for LUT0 and LUT1
 CCL.SEQCTRL0 = CCL_SEQSEL0_RS_gc;

//Enable LUT0 output on IO pin
 CCL.LUT0CTRLA |= CCL_OUTEN_bm; /* Output Enable: enabled */

//Enable LUTs
 CCL.LUT0CTRLA |= CCL_ENABLE_bm; /* LUT Enable: enabled */
 CCL.LUT1CTRLA |= CCL_ENABLE_bm; /* LUT Enable: enabled */

//Enable CCL module
 CCL.CTRLA = CCL_ENABLE_bm; /* Enable: enabled */
}

int main(void)
{
 PORT_init();
 CCL_init();
 /* Replace with your application code */
 while (1)
 {
 ;
 }
}

 TB3218
Appendix

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 23

Microchip Information

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within operating

specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code

protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including to design, test,
and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded

 TB3218

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 24

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron,
and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime,
IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity,
JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-
ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher,
SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-0539-3

 TB3218

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 25

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3218

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 26

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2022 Microchip Technology Inc.
and its subsidiaries

 Technical Brief DS90003218C-page 27

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Relevant Devices
	2. Overview
	3. Logic AND Gate
	4. State Decoder
	5. SR Latch
	6. Advanced Examples
	7. References
	8. Revision History
	9. Appendix
	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

