
 Migration Guide
 Migration from the megaAVR® to AVR® Dx Microcontroller

Families

Introduction

Author: Cristian Pop, Microchip Technology Inc.

This document will help application designers familiar with the megaAVR® families to migrate to the AVR® Dx MCU
families, covering both differences and similarities. The comparison is applicable for most of the megaAVR vs. the
AVR Dx products but, in this document, the focus is on the ATmega128 and AVR128DA64, two generations of 128
KB Flash MCUs available in 64-pin packages.

Most of the AVR Dx peripherals are functionally compatible with the megaAVR peripherals (including WDT, RTC, AC,
ADC, SPI, USART, TWI, and Timers), but updates to the source code will be required when migrating. The following
sections provide details on a few updates, but the migrated code must be fully tested to ensure the target
application's intended behavior is the same. The megaAVR and AVR Dx families are not pin-to-pin compatible.

For the AVR Dx family, the names of the pins are the same, but their position has changed from the megaAVR family.
For more details, see the Pin Configurations and Pinout sections, respectively, in the data sheet of each device.

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 1

Table of Contents

Introduction...1

1. Relevant Devices.. 3

2. Common Peripherals.. 4

2.1. Common Peripherals..4
2.2. System .. 5
2.3. Memories..8
2.4. I/O Ports and Pinouts... 9
2.5. Timers...12
2.6. RTC - Real-Time Counter...18
2.7. SPI..20
2.8. USART... 21
2.9. TWI - Two-Wire Serial Interface... 23
2.10. AC - Analog Comparator..26
2.11. ADC - Analog-to-Digital Converter... 28
2.12. WDT - Watchdog Timer..30

3. AVR® Dx - Additional Peripherals... 32

3.1. Overview.. 32
3.2. DAC - Digital-to-Analog Converter... 32
3.3. CCL - Configurable Custom Logic ...33
3.4. EVSYS - Event System..33
3.5. CRCSCAN - Cyclic Redundancy Check Memory Scan... 33
3.6. ZCD - Zero-Cross Detector.. 34
3.7. PTC - Peripheral Touch Controller... 34
3.8. MVIO - Multi-Voltage I/O.. 35
3.9. OPAMP - Analog Signal Conditioning.. 36

4. References..38

5. Revision History.. 39

The Microchip Website...40

Product Change Notification Service..40

Customer Support.. 40

Microchip Devices Code Protection Feature.. 40

Legal Notice... 41

Trademarks.. 41

Quality Management System... 42

Worldwide Sales and Service...43

 Migration Guide

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 2

1. Relevant Devices
This section lists the relevant devices for this document. The following figures show the different family devices,
laying out pin count variants and memory sizes:

• Vertical migration upwards is possible without code modification, as these devices are pin-compatible and
provide the same or more features

• Horizontal migration to the left reduces the pin count and, therefore, the available features
• Devices with different Flash memory sizes typically also have different SRAM and EEPROM

Figure 1-1. megaAVR® Family Overview

16 KB

40/44
Pins

ATmega32

64

ATmega16

ATmega64

32 KB

64 KB

Flash

128 KB ATmega128

Figure 1-2. AVR® DA Family Overview

Pins

Flash

AVR64DA28

AVR128DA28

AVR32DA28

AVR128DA32 AVR128DA48 AVR128DA64

AVR64DA32 AVR64DA48 AVR64DA64

AVR32DA32 AVR32DA4832 KB

28 48 64 32

64 KB

128 KB

Figure 1-3. AVR® DB Family Overview

Pins

Flash

AVR64DB28

AVR128DB28

AVR32DB28

AVR128DB32 AVR128DB48 AVR128DB64

AVR64DB32 AVR64DB48 AVR64DB64

AVR32DB32 AVR32DB48

28 48 64 32

32 KB

64 KB

128 KB

 Migration Guide
Relevant Devices

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 3

2. Common Peripherals

2.1 Common Peripherals
The following table shows the list of peripherals that are present in both families:

Peripherals/Features
AT

m
eg

a1
6

AT
m

eg
a3

2

AT
m

eg
a6

4

AT
m

eg
a1

28

AV
R

®
 D

A
 F

am
ily

AV
R

®
 D

B
 F

am
ily

Maximum Frequency
16 MHz
(VDD ≥
4.5V)

16 MHz
(VDD ≥
4.5V)

16 MHz
(VDD ≥
4.5V)

16 MHz
(VDD ≥
4.5V)

24 MHz 24 MHz

Supply voltage (VDD) 1.8–5.5V 1.8–5.5V 1.8–5.5V 1.8–5.5V 1.8–5.5V 1.8–5.5V

Package (pin number) 40, 44 40, 44 64 64 28, 32, 48, 64 28, 32, 48, 64

Flash memory

(Read-while-write
section)

16 KB

(14 KB)

32 KB

(28 KB)

64 KB

(56 KB)

128 KB

(120 KB)

32-128 KB

-

32-128 KB

-

RAM memory 1 KB 2 KB 4 KB 4 KB 4-16 KB 4-16 KB

EEPROM 512 bytes 1 KB 2 KB 4 KB 512 bytes 512 bytes

GPIO 32 32 53 53 51 51

USART 1 1 2 2 5 5

SPI 1 1 1 1 2 2

TWI (I2C) 1 1 1 1 2 2

8-bit Timer/Counter 2 2 2 2 -(1) -(1)

12-bit Timer/Counter - - - - 1 1

16-bit Timer/Counter 1 1 1 1 7(1) 7(1)

Real Time Counter
(RTC) 1 1 1 1 1 1

Analog Comparator
(AC) 1 1 1 1 3 3

Analog-to-Digital
Converter (ADC) 1 1 1 1 1 1

Watchdog Timer (WDT) 1 1 1 1 1 1

Note: 
1. For AVR Dx, each TCA in the Split mode works as two separate 8-bit timers, each of them having three

compare channels for PWM generation.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 4

2.2 System

2.2.1 CPU
The megaAVR and AVR Dx families are based on the well-recognized AVR CPU, but the AVR Dx benefits from an
updated version of the classic core. The megaAVR instruction set is fully supported by the AVR Dx core, and the
execution time is improved. The differences are handled by a C/C++ compiler, but the users that are porting time-
critical or cycle-accurate code must refer to the AVR® Instruction Set Manual to verify that the execution time is within
the accepted range.

Note:  For details about the instruction set and execution time, refer to the AVR® Instruction Set Manual. Refer to the
CPU version called AVRxt for details regarding the AVR Dx devices and the version called AVR for megaAVR
devices.

2.2.2 Interrupts
Both megaAVR and AVR Dx families offer a comprehensive interrupt system, with a configurable interrupt vector
table, but the architecture and features are different between families. The interrupt vectors and flags are not identical
in both families, even if they are used by the same peripheral.

For the megaAVR devices, the Reset vector can be placed either at address 0x0000 or Boot Reset address,
selectable using Boot Reset Fuse (BOOTRST), and Interrupt Vector Select (IVSEL) fuses. That allows the usage of
different interrupt vector locations for the bootloader and the application, with the flexibility of commuting between
them in software.

The interrupt vector table of the AVR Dx devices is always placed at address 0x0000 after Reset, even if the
bootloader is used. That is possible because the bootloader section is placed at the beginning of the Flash area and
not at the end, like for the megaAVR devices. The interrupt vector table is software re-mappable to the beginning of
the application area using the IVSEL bit from the CPUINT.CTRLA register.

The interrupt vector table is always placed in the generated code, even if only a limited number of interrupts are used.
To allow writing of compact code, the interrupt controller of the AVR Dx devices offers a selectable Compact Vector
Table (CVT). This feature reduces the number of interrupt handlers and thereby frees up memory that can be used
for the application code. When the CVT feature is used, all interrupts share the same interrupt vector number/
Interrupt Service Routine (ISR).

Additionally to the CVT feature, the AVR Dx interrupt controller offers a non-maskable interrupt for critical functions,
one selectable high-priority interrupt, and an optional round robin scheduling scheme for normal priority interrupts.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 5

http://www.microchip.com/DS40002198
http://www.microchip.com/DS40002198

2.2.3 Clock Sources
The megaAVR microcontrollers allow multiple clock options for system clock, selectable from the external RC
oscillator, crystal oscillator, external clock, and calibrated internal RC oscillator. The clock source is selectable by
fuses (CKOPT and CKSEL[3:0]) and cannot be changed by software.

Figure 2-1. ATmega128 Clock – Block Diagram

General I/O
Modules

Asynchronous
Timer/Counter ADC CPU Core RAM

clkI/O

clkASY

AVR® Clock
Control Unit

clkCPU

Flash and
EEPROM

clkFLASH

clkADC

Source Clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Clock
Multiplexer

Watchdog Clock

Calibrated RC
Oscillator

Timer/Counter
Oscillator

Crystal
Oscillator

Low-Frequency
Crystal Oscillator

External RC
Oscillator External Clock

The AVR Dx family uses a different clock system compared to the megaAVR family. Even if the default oscillator is
selected using fuses, this can be safely changed by software during normal operation. The frequency of the internal
High-Frequency oscillator (OSCHF) is also selectable by software to 1, 2, 3, 4 MHz, and multiples of 4, up to 24 MHz.
For more details, see the CLKCTRL - Clock Controller section from the device data sheet.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 6

Figure 2-2. AVR® Dx Clock – Block Diagram

32.768 kHz

XOSC32K

XTAL32K1 XTAL32K2

CLK_MAIN

CLK_RTC

CLK_PER

CLK_CPU

TCD CLKSEL

D
IV

8

XOSC32KSEL

PLL

PLLSRC

CLKOUT

Interrupt

OSCHF
32.768 kHz

OSC32K

D
IV

3
2

RTC PeripheralsRAMCPU NVM

WDTBOD

Main Clock

Prescaler

Main Clock Switch

TCD

 RTC CLKSEL

CFD

CFDSRC

XOSCSEL

XOSCHF

XTALHF1 XTALHF2

CLK_TCD

CLK_WDT

CLK_BOD

Additionally, the AVR Dx devices provide a Phase-Locked Loop (PLL) that allows clock multiplication by 2x or 3x
(maximum frequency 48 MHz) and can serve as input for the Timer/Counter type D (TCD).

Not all AVR Dx devices provide the option for a High-Frequency crystal oscillator (XOSCHF), but the accuracy of the
AVR Dx’s internal High-Frequency oscillator (OSCHF) can be improved using the built-in auto-tune logic combined
with the 32.768 kHz crystal oscillator. This is done by comparing the internal 1 MHz clock with a reference derived
from the 32.768 kHz crystal:

Figure 2-3. OSCHF Auto-Tune Block Diagram

32.768 kHz
XOSC OSCHFAUTO-TUNE

Control Logic
"tune up/down"

Note:  For details about how to use the auto-tune feature, refer to TB3234 - Internal High-Frequency Oscillator
Calibration Using the Auto-Tune Feature.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 7

http://microchip.com/DS90003234
http://microchip.com/DS90003234

2.3 Memories
The AVR architectures have two main memory spaces: The Data Memory and the Program Memory. The CPU Data
Memory space allows faster access and is accessible using LD/ST instructions in assembly, while the Program
Memory space (code space) is accessible through LPM/SPM instructions.

For the megaAVR devices, the first 4352 bytes from Data Memory are reserved for the Register file, the I/O memory,
the extended I/O memory, and the internal data SRAM. The first 32 locations are used to access the Register file,
and the next 64 locations access the standard I/O memory, then 160 locations of extended I/O memory, and the next
4096 locations access the internal data SRAM.

For the megaAVR devices with at least 64 KB Flash memory, an external memory interface is available for interfacing
with other devices. This external interface allows the access of an area in the remaining address locations up to the
64 KB address space. This area starts at the address following the internal SRAM.

For the AVR Dx devices, the peripherals, SRAM, EEPROM and the I/O registers are all located in the Data Memory
space, while the Flash is located in the Program Memory space. The Flash memory can be also mapped into the
Data Memory space in blocks of 32 KB.

Unlike the megaAVR devices, the AVR Dx devices do not have support for the external memory interface.

2.3.1 In-System Programmable Flash Memory and Bootloader Support
Both AVR families allow updates of the program memory using software. The on-chip in-system reprogrammable
Flash memory is used mainly for program storage. For software security, the Flash Program Memory space is divided
into sections with different access rights: megaAVR devices have two sections (the Boot section and Application
Program section), while AVR Dx devices provide three configurable sections (Boot Code section, Application Code
section, and Application Data section).

For the megaAVR devices, the size of the Boot section can be configured using BOOTSZ[1:0] fuses to any from the
following values: 512, 1024, 2048 or 4096 words. This section is located at the end of the Flash memory.

For the AVR Dx devices, the size of the Boot section can be configured to any value with a granularity of 512 bytes
using the Boot Size (BOOTSIZE) fuse, and it is located at the beginning of the Flash area. The remaining Flash can
be split into an Application Program section and Application Data section using the CODESIZE fuse. For security
reasons, the code executing from the Boot section can write the Application section or Data section, the code
executing from the Application section can write only the Data section, and the code executing from the Data section
cannot write to any Flash section. This mechanism prevents unintentional alteration of sections. Additional to this
hardware mechanism, the device implements software options that can prevent an unwanted read of the boot code
from other sections.

2.3.2 SRAM and EEPROM Memories
For both families, the SRAM memory is located in the Data space. The address offset and the size of the SRAM
memory can be different from device to device (even in the same family). Refer to the device data sheet for details
about available size and address offset.

For the megaAVR devices, the EEPROM is located in a separate data space and is accessible through the I/O
space. See the following code examples:

Example 2-1. megaAVR® - EEPROM Read/Write Byte

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)
{
 /* Wait for completion of previous write */
 while(EECR & (1<<EEWE))
 ;
 /* Set up address and data registers */
 EEAR = uiAddress;
 EEDR = ucData;
 /* Write logical one to EEMWE */
 EECR |= (1<<EEMWE);
 /* Start eeprom write by setting EEWE */
 EECR |= (1<<EEWE);
}

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 8

The EEPROM is located in the Data space for the AVR Dx devices. That allows a linear addressing of the entire area
and faster access using the LD/ST instructions:

Example 2-2. AVR® Dx - EEPROM Read/Write Byte

uint8_t FLASH_0_read_eeprom_byte(eeprom_adr_t eeprom_adr)
{
 /* Read operation will be stalled by hardware if any write is in progress
*/
 return *(uint8_t *)(EEPROM_START + eeprom_adr);
}

nvmctrl_status_t FLASH_0_write_eeprom_byte(eeprom_adr_t eeprom_adr, uint8_t
data)
{
 /* Wait for completion of previous operation */
 while (NVMCTRL.STATUS & (NVMCTRL_EEBUSY_bm | NVMCTRL_FBUSY_bm))
 ;

 /* Program the EEPROM with desired value(s) */
 ccp_write_spm((void *)&NVMCTRL.CTRLA, NVMCTRL_CMD_EEERWR_gc);

 /* Write byte to EEPROM */
 *(uint8_t *)(EEPROM_START + eeprom_adr) = data;

 /* Clear the current command */
 ccp_write_spm((void *)&NVMCTRL.CTRLA, NVMCTRL_CMD_NONE_gc);

 return NVM_OK;
}

2.4 I/O Ports and Pinouts

2.4.1 Common Functionalities

2.4.1.1 GPIO Basic Functionality
The megaAVR and AVR Dx families are not pin-to-pin compatible. Thus, the GPIO basic functionality is similar and is
configurable using three registers for both families:

megaAVR® AVR® Dx Description

DDRx PORTx.DIR Data direction - controls the data direction (output driver)

PORTx PORTx.OUT Data out - controls the output driver level for each PORTx pin

PINx PORTx.IN Data in - shows the state of the PORTx pin

The following code snippets show how to configure the PORTA pin 7 as output-driven high for each family.

Example 2-3. megaAVR® - Port A, Pin 7 Configured as Output and Driven High

{
DDRA = 0x80;
PORTA = 0x80;
}

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 9

Example 2-4. AVR® Dx - Port A, Pin 7 Configured as Output and Driven High

{
PORTA.DIR = 0x80;
PORTA.OUT = 0x80;
}

2.4.1.2 Pin Override
The AVR microcontrollers are using the I/O PORT pins for basic operations (I/O access) and peripherals. The
megaAVR microcontroller uses Alternate Port Function registers to switch between the two functionalities. It is the
user’s responsibility to properly configure the Alternate Port Function registers when the I/O pins are used by a
peripheral.

For the AVR Dx devices, the peripheral configuration overwrites the basic functionality of the GPIO pin when the
peripheral is enabled and uses the I/O pin. There are some peripherals (i.e., Timers, CCL, SPI) that do not mandatory
require an I/O pin when they are used; the features of those peripherals are available internally as inputs to other
peripherals (i.e., Event System, Interrupt, CCL) and/or for software access. In this case, an additional output enable
option is provided into the peripheral configuration registers.

2.4.1.3 Pull-Up Option
For the megaAVR microcontrollers, the pull-ups are enabled by default at power-up. The software can enable or
disable all ports simultaneously using the Pull-Up Disable (PUD) bit in the Special Function I/O (SFIOR) register.

Unlike megaAVR microcontrollers, the AVR Dx families provide a pull-up option for each pin individually. The pull-up
is disabled at Reset and can be enabled by software using the Pull-Up Enable bit in the PORTx.PINnCTRL register.

2.4.2 AVR® Dx Additional Features

2.4.2.1 Direct Pin Configuration
The GPIO basic functionality is controlled using the three registers that reside in the extended I/O Register space.
This space does not allow bit manipulation instructions, and the configuration update for one pin is done using the
Read-Modify-Write instructions. The hardware Read-Modify-Write functionality ensures a safe and correct change of
the drive values and/or input and sense configuration, but it is translated into three assembler instructions. The
following code snippet shows the PA7 pin configuration as output:

Example 2-5. C Code Example:

 PORTA.DIR |= 0x80;

Example 2-6. Assembler Code:

 ;Load PORTA.DIR address into Z-pointer
 LDI R30, 0x00;
 LDI R31, 0x04;
 LDI R24, Z ;Read content of PORTA.DIR register
 ORI R24, 0x80 ;Logic or with 0x80
 ST Z, R24 ;Store result into PORTA.DIR register

To speed up the access and to offer more flexibility, the new AVR Dx microcontrollers offer a new subset of registers
that allow the update of the GPIO configuration for multiple pins in one instruction:

Register (Note) Description

PORTx.DIRSET Writing a ‘1’ to any bit in this bit field will set the corresponding bit in PORTx.DIR, which will
configure the corresponding pin as an output pin and enable the output driver

PORTx.DIRCLR Writing a ‘1’ to any bit in this bit field will clear the corresponding bit in PORTx.DIR, which will
configure the corresponding pin as an input-only pin and disable the output driver

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 10

...........continued
Register (Note) Description

PORTx.DIRTGL Writing a ‘1’ to any bit in this bit field will toggle the corresponding bit in PORTx.DIR

PORTx.OUTSET Writing a ‘1’ to any bit in this bit field will set the corresponding bit in PORTx.OUT, which will
configure the corresponding pin to be driven high

PORTx.OUTCLR Writing a ‘1’ to any bit in this bit field will clear the corresponding bit in PORTx.OUT, which will
configure the corresponding pin to be driven low

PORTx.OUTTGL Writing a ‘1’ to any bit in this bit field will toggle the corresponding bit in PORTx.OUT

Note:  Writing ‘0’ to any bit position in the registers has no effect.

Using the direct pin configuration feature, the code for the configuration of the PA7 pin as output becomes:

Example 2-7. C Code:

 PORTA.DIRSET = 0x80;

Example 2-8. Assembler Code:

 ;Load PORTA.DIRSET address into Z-pointer
 LDI R30, 0x01;
 LDI R31, 0x04;
 LDI R24, 0x80 ;Load mask
 ST Z, R24 ;Write to the PORTA.DIRSET register

2.4.2.2 Virtual Ports
The often-used PORT registers are also mapped into bit-accessible I/O memory space. The access to the Virtual
PORT registers has the same outcome as the access to the regular registers, but it allows for memory-specific
instructions, such as bit manipulation instructions. These instructions cannot be used in the extended I/O Register
space where the regular PORT registers reside.

Regular Port Registers Virtual Port Registers Description

PORTx.DIR VPORTx.DIR Data direction - controls the data direction (output driver)

PORTx.OUT VPORTx.OUT Data Out - controls the output driver level for each
PORTx pin

PORTx.IN VPORTx.IN Data In - shows the state of the PORTx pin

PORTx.INTFLAGS VPORTx.INTFLAGS Pin Interrupt flag - is set when the change or state of the
PORTx pin matches the pin’s Input/Sense Configuration
(ISC) in PORTx.PINnCTRL

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 11

2.4.2.3 Multipin Configuration
The multipin configuration function is used to configure the multiple PORT pins in one operation. The wanted pin
configuration is first written to the PORTx.PINCONFIG register, followed by a register write, with the selected pins to
modify. This allows changing the configuration (PORTx.PINnCTRL) for up to eight pins in one write. The following
code snippet shows the pin configuration for PORTA:

 /* Pin configuration - inverted I/O enabled, Pull-up enabled, interrupt sensing on rising
edge */
 PORTA.PIN7CTRL = PORT_INVEN_bm | PORT_PULLUPEN_bm | PORT_ISC1_bm;
 PORTA.PIN5CTRL = PORT_INVEN_bm | PORT_PULLUPEN_bm | PORT_ISC1_bm;
 PORTA.PIN2CTRL = PORT_INVEN_bm | PORT_PULLUPEN_bm | PORT_ISC1_bm;
 PORTA.PIN0CTRL = PORT_INVEN_bm | PORT_PULLUPEN_bm | PORT_ISC1_bm;

The previous code can be replaced, using the multipin configuration feature, with:

/* Pin configuration - inverted I/O enabled, Pull-up enabled, interrupt sensing on rising
edge */
 PORTA.PINCONFIG = PORT_INVEN_bm | PORT_PULLUPEN_bm | PORT_ISC1_bm;
/* Update PINxCTRL for pins PA7, PA5, PA2 and PA0 */
 PORTA.PINCTRLUPD = PIN7_bm | PIN5_bm | PIN2_bm | PIN0_bm;

2.4.2.4 PORTMUX
The AVR Dx devices provide multiple options for peripheral inputs/outputs. Those options are user-selectable using
the PORTMUX registers and offer flexibility during design implementation (the user can choose the best option for
PCB routing). For more details about the available inputs/outputs, refer to the specific AVR Dx data sheet.

2.5 Timers
The timers available on the AVR Dx families are improved versions of the timers present on ATmega128. Additionally,
the AVR Dx devices present an increased number of timers and multiple options for their output, which simplifies the
schematic design. The following type of timers are present on the AVR Dx devices:

• Timer/Counter type A (TCA)
• Timer/Counter type B (TCB)
• Timer/Counter type D (TCD)

The timers are not code-compatible (a different set of registers), but all functionalities present on ATmega128 are
replicable using AVR Dx timers. Thus, the following sections will describe how to obtain different functionalities using
AVR Dx timers.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 12

2.5.1 TCA - Timer/Counter Type A
The Timer Counter type A (TCA) is an improved version of Timer 0 of megaAVR devices. The TCA consists of a base
counter and a set of compare channels. The compare channels can be used together with the base counter to do a
compare match control, frequency generation, and pulse-width waveform modulation.

Unlike Timer 0 of the megaAVR devices, which is an 8-bit timer, the TCA is a 16-bit timer/counter with three compare
channels. It can be clocked and timed from the peripheral clock, with optional prescaling, or from the Event System.
The Event System can also be used for direction control or to synchronize operations.

Figure 2-4. AVR® Dx - TCA Block Diagram

Base Counter

Compare Unit n

Counter

=

CMPn

CMPnBUF

Waveform
Generation

BV

=

PERBUF

PER

CNT

BV

=0

‘‘count’’

‘‘clear’’

‘‘direction’’

‘‘load’’
Control Logic

OVF
(INT Req. and Event)

TOP

‘‘match’’ CMPn
(INT Req. and Event)

Control Logic

Clock Select

U
P

D
A

T
E

BOTTOM

WOn Out

Event

CTRLA

CTRLB

EVCTRL

Mode

Event
Action

Additionally, the TCA has a Split mode feature that splits the 16-bit timer into two separate 8-bit timers, each having
three compare channels for PWM generation. The Split mode will only work with single-slope down-count. The event
controlled operation is not supported in Split mode.

The following subsection will show a few possible use cases for the TCA.

2.5.1.1 Normal Mode (Counter Mode)
In this mode, the TCA is used as an up/down counter having peripheral clock or events as a clock source. Depending
on the mode of operation used, the internal counter is cleared, incremented, or decremented at each timer clock or
event. The Counter (TCAn.CNT) Register value can be read by the CPU anytime. The write access to TCAn.CNT
has a higher priority than count, clear or reload, and will be immediate. The direction of the counter can also be
changed during normal operation by writing to DIR in TCAn.CTRLE.

In Normal mode, the TCA Overflow output is not present on the pin, but the TCA can be used to generate an interrupt
when the number of counting events reached the TCAn.CMPn value. The following code shows the configuration of
TCA to generate periodic interrupts (interrupt code not included):

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 13

Example 2-9. AVR® Dx - TCA Initialization, Periodic Interrupt Enabled

void TCA0_init(void)
{
 /* enable overflow interrupt */
 TCA0.SINGLE.INTCTRL = TCA_SINGLE_OVF_bm;

 /* set Normal mode */
 TCA0.SINGLE.CTRLB = TCA_SINGLE_WGMODE_NORMAL_gc;

 /* disable event counting */
 TCA0.SINGLE.EVCTRL &= ~(TCA_SINGLE_CNTEI_bm);

 /* set the period */
 TCA0.SINGLE.PER = PERIOD_EXAMPLE_VALUE;

 TCA0.SINGLE.CTRLA = TCA_SINGLE_CLKSEL_DIV256_gc /* set clock
source (sys_clk/256) */
 | TCA_SINGLE_ENABLE_bm; /* start timer */
}

2.5.1.2 Waveform Generation Modes
The compare channels can be used for waveform generation on the corresponding port pins. Each Compare
Channel n continuously compares the counter value (TCAn.CNT) with the Compare n (TCAn.CMPn) register. If
TCAn.CNT equals TCAn.CMPn, the Comparator n signals a match. This signal is then used for waveform generation,
function by the WGMODE bit field selection in the TCAn.CTRLB register.

Note:  One single waveform mode is available for all the compare channels since the WGMODE bit field is common
to all channels.

Example 2-10. AVR® Dx - TCA Initialization, Single-Scope PWM Mode

void TCA0_init(void)
{
 /* set waveform output on PORT A */
 PORTMUX.TCAROUTEA = PORTMUX_TCA0_PORTA_gc;

 TCA0.SINGLE.CTRLB = TCA_SINGLE_CMP0EN_bm /* enable compare channel 0 */
 | TCA_SINGLE_WGMODE_SINGLESLOPE_gc; /* set single slope PWM mode
*/

 /* disable event counting */
 TCA0.SINGLE.EVCTRL &= ~(TCA_SINGLE_CNTEI_bm);

 /* set PWM frequency and duty cycle (50%) */
 TCA0.SINGLE.PERBUF = PERIOD_EXAMPLE_VALUE;
 TCA0.SINGLE.CMP0BUF = DUTY_CYCLE_EXAMPLE_VALUE;

 TCA0.SINGLE.CTRLA = TCA_SINGLE_CLKSEL_DIV4_gc /* set clock source
(sys_clk/4) */
 | TCA_SINGLE_ENABLE_bm; /* start timer */
}

Note:  For more details and code examples, refer to TB3217 - Getting Started with TCA.

2.5.2 TCB - Timer/Counter Type B
The Timer/Counter type B (TCB) of the AVR Dx devices can be used to replace all the functionalities of Timer 1 from
the megaAVR devices.

The capabilities of the TCB include frequency and waveform generation and input capture on an event with time and
frequency measurement of the digital signals. The TCB consists of a base counter and control logic that can be set in
one of eight different modes, each mode providing unique functionality.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 14

http://microchip.com/DS90003217

Figure 2-5. AVR® Dx - TCB Block Diagram

Counter

CTRLA

CTRLB

EVCTRL

Control
Logic

=

= MAX

Waveform
Generation

OVF
(Interrupt Request
and Events)

CNT

CCMP

Clear

Count

Match

CAPT
(Interrupt Request
and Events)

WO

Clock Select

Mode

= 0
BOTTOM

Events

Restart

Event Action

The TCB can be clocked from the Peripheral Clock (CLK_PER), from a 16-bit Timer/Counter type A (CLK_TCAn) or
the Event System (EVSYS), selectable through the Clock Select (CLKSEL) bit field in the Control A (TCBn.CTRLA)
register:
Figure 2-6. AVR® Dx - TCB Clock Logic

CTRLA

CLK_PER

DIV2
CLK_TCAn

Events

CNT

Control

Logic

CLK_TCB

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 15

If the waveform output (WO) is required to be available on a pin, the Compare/Capture Output Enable (CCMPEN)
from the Control B (TCBn.CTRLB) register must be written to ‘1’. The location of WO is also selectable using the
PORTMUX.TCBROUTEA register, but the direction of the WO pin needs to be configured as an output (the TCB
overwrites the functionality of the output pin but does not overwrite the pin direction).

The following code snippets show the TCB initialization examples for a few use cases.

2.5.2.1 TCB in Input Capture on Event Mode
In this mode, the counter will count from BOTTOM to MAX continuously. When an event is detected, the CNT is
transferred to the Capture/Compare (TCBn.CCMP) register, and a CAPT interrupt and event is generated. This mode
can be used, but not limited, to measure the interval between successive events.

Since the counter is working continuously, the Overflow (OVF) bit from the TCBn.INTFLAGS register is used to
signalize that. It is the user’s responsibility to take into account when the overflow appears between successive
events.

Example 2-11. AVR® Dx - TCB initialization for Input Capture on Event Mode

void TCB2_Init(void)
{
 TCB2.CTRLB = 0 << TCB_ASYNC_bp /* Asynchronous Enable: disabled */
 | 0 << TCB_CCMPEN_bp /* Pin Output Enable: disabled */
 | 0 << TCB_CCMPINIT_bp /* Pin Initial State: disabled */
 | TCB_CNTMODE_CAPT_gc; /* Input Capture Event */

 TCB2.EVCTRL = 1 << TCB_CAPTEI_bp /* Event Input Enable: enabled */
 | 0 << TCB_EDGE_bp /* Event Edge: positive */
 | 0 << TCB_FILTER_bp; /* Input Capture Noise Cancellation
Filter: disabled */

 TCB2.INTCTRL = 1 << TCB_CAPT_bp /* Capture or Timeout: enabled */
 | 0 << TCB_OVF_bp; /* OverFlow Interrupt: disabled */

 TCB2.CTRLA = TCB_CLKSEL_DIV1_gc /* CLK_PER */
 | 1 << TCB_ENABLE_bp /* Enable: enabled */
 | 0 << TCB_RUNSTDBY_bp /* Run Standby: disabled */
 | 0 << TCB_SYNCUPD_bp /* Synchronize Update: disabled */
 | 0 << TCB_CASCADE_bp; /* Cascade Two Timer/Counters:
disabled */
}

2.5.2.2 TCB in Input Capture for Frequency Measurement Mode
In Input Capture for Frequency Measurement mode, the TCB captures the counter value and restarts on either a
positive or negative edge of the event input signal (the active edge is selectable using the Event Edge bit from the
TCBn.EVCTRL register). Using this mode, the period of the input signal is available to software on each signal
period, helping the software to monitor the signal’s period/frequency.

Example 2-12. AVR® Dx - TCB initialization for Input Capture Frequency Measurement Mode

void TCB2_Init(void)
{
 TCB2.CTRLB = 0 << TCB_ASYNC_bp /* Asynchronous Enable: disabled */
 | 0 << TCB_CCMPEN_bp /* Pin Output Enable: disabled */
 | 0 << TCB_CCMPINIT_bp /* Pin Initial State: disabled */
 | TCB_CNTMODE_FRQ_gc; /* Input Capture Frequency
measurement */

 TCB2.EVCTRL = 1 << TCB_CAPTEI_bp /* Event Input Enable: enabled */
 | 0 << TCB_EDGE_bp /* Event Edge: disabled */
 | 0 << TCB_FILTER_bp; /* Input Capture Noise Cancellation
Filter: disabled */

 TCB2.INTCTRL = 1 << TCB_CAPT_bp /* Capture or Timeout: enabled */
 | 0 << TCB_OVF_bp; /* OverFlow Interrupt: disabled */

 TCB2.CTRLA = TCB_CLKSEL_DIV1_gc /* CLK_PER */
 | 1 << TCB_ENABLE_bp /* Enable: enabled */
 | 0 << TCB_RUNSTDBY_bp /* Run Standby: disabled */

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 16

 | 0 << TCB_SYNCUPD_bp /* Synchronize Update: disabled */
 | 0 << TCB_CASCADE_bp; /* Cascade Two Timer/Counters:
disabled */
}

2.5.2.3 TCB in Single-Shot Mode
The Single-Shot mode can be used to generate a pulse with a duration defined by the Compare (TCBn.CCMP)
register every time a rising or falling edge is observed on a connected event channel.

Example 2-13. AVR® Dx - TCB Initialization in Single-Shot Mode

void TCB2_Init(void)
{
 TCB2.CCMP = 0x400; /* Pulse width: 0x400*/

 TCB2.CTRLB = 0 << TCB_ASYNC_bp /* Asynchronous Enable: disabled */
 | 0 << TCB_CCMPEN_bp /* Pin Output Enable: disabled */
 | 0 << TCB_CCMPINIT_bp /* Pin Initial State: disabled */
 | TCB_CNTMODE_SINGLE_gc; /* Single Shot*/

 TCB2.EVCTRL = 1 << TCB_CAPTEI_bp /* Event Input Enable: enabled */
 | 0 << TCB_EDGE_bp /* Event Edge: disabled */
 | 0 << TCB_FILTER_bp; /* Input Capture Noise Cancellation
Filter: disabled */

 TCB2.INTCTRL = 1 << TCB_CAPT_bp /* Capture or Timeout: enabled */
 | 0 << TCB_OVF_bp; /* OverFlow Interrupt: disabled */

 TCB2.CTRLA = TCB_CLKSEL_DIV1_gc /* CLK_PER */
 | 1 << TCB_ENABLE_bp /* Enable: enabled */
 | 0 << TCB_RUNSTDBY_bp /* Run Standby: disabled */
 | 0 << TCB_SYNCUPD_bp /* Synchronize Update: disabled */
 | 0 << TCB_CASCADE_bp; /* Cascade Two Timer/Counters:
disabled */

}

For all previous uses cases, the TCB must be used in correlation with the Event System. The following sample of
code shows the configuration of the Event System (the pin PA6 is used as an input event for TCB2):

Example 2-14. AVR® Dx - Event System Initialization for TCB

int8_t EVENT_SYSTEM_0_init()
{
 EVSYS.CHANNEL0 = EVSYS_CHANNEL0_PORTA_PIN6_gc; /* Port A Pin 6 */
 EVSYS.USERTCB2CAPT = EVSYS_USER_CHANNEL0_gc; /* Connect TCB2 to event
channel 0 */

Additionally to the use cases presented, the TCB can be used for periodic interrupts, time-out checks, PWM
generation, or as a 32-bit timer in conjunction with another TCB peripheral. Refer to the AVR Dx data sheet for the
complete list of operation modes.

Note:  For more details and code examples, refer to TB3214 - Getting Started with TCB.

2.5.3 TCD - Timer/Counter Type D
The Timer/Counter type D (TCD) is a high-performance waveform generator that consists of an asynchronous
counter, a prescaler, and compare, capture and control logic. The TCD counter can run on a clock which is
asynchronous to the peripheral clock. It contains compare logic that generates two independent outputs with optional
dead-time. It is connected to the Event System for capture and deterministic Fault control. The timer/counter can
generate interrupts and events on compare match and overflow.

Similar to other AVR Dx timers, the TCD can be used to generate PWM waveforms. Even if the waveform generation
modes are similar to TCA or TCB (one ramp, two ramp, four ramp, dual slope), the TCD compare logic allows
conditional waveform generation on external events like Fault handling, input blanking, overload protection, and fast

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 17

http://microchip.com/DS90003214

emergency stop by hardware. Those features, together with dead-time support, make the TCD an ideal choice for
applications that require hardware support for half-bridge and full-bridge signals.

The TCD waveform output signals are controlled by the Compare Enable (CMPxEN) bits in the TCDn.FAULTCTRL
register and are available internally or on the pins. Similar to other AVR Dx peripherals, the TCD overwrites the
functionality of the pin but does not configure the pin as an output. If the waveform outputs are needed on the pins,
the software must configure those pins as outputs.

The following code shows TCD initialization for the generation of complementary driving signals, with dead-time:

Example 2-15. AVR® Dx - TCD Initialization in Half-Bridge Mode

void TCD0_init(void)
{
 /* set the waveform mode */
 TCD0.CTRLB = TCD_WGMODE_DS_gc;

 /* set the signal period */
 TCD0.CMPBCLR = SIGNAL_PERIOD_EXAMPLE_VALUE;

 /* the signals are alternatively active and a small symmetric dead-time is
needed */
 TCD0.CMPBSET = SIGNAL_DUTY_CYCLE_EXAMPLE_VALUE + 1;
 TCD0.CMPASET = SIGNAL_DUTY_CYCLE_EXAMPLE_VALUE - 1;

 /* ensure ENRDY bit is set */
 while(!(TCD0.STATUS & TCD_ENRDY_bm))
 {
 ;
 }

 TCD0.CTRLA = TCD_CLKSEL_20MHZ_gc /* choose the timer’s clock */
 | TCD_CNTPRES_DIV1_gc /* choose the prescaler */
 | TCD_ENABLE_bm; /* enable the timer */
}

Note:  For more details and code examples, refer to TB3212 - Getting Started with TCD.

2.6 RTC - Real-Time Counter
The Real-Time Counter (RTC) is a peripheral that typically runs continuously, including in Low-Power sleep modes, to
keep track of time. It offers two timing functions: The Real-Time Counter (RTC) and a Periodic Interrupt Timer (PIT). It
can wake up the device from sleep modes and/or interrupt the device at regular intervals.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 18

http://microchip.com/DS90003212

Figure 2-7. AVR® Dx - RTC Block Diagram

RTC

32.768 kHz Crystal Osc.

32.768 kHz Int. Osc.

XTAL32K1

XTAL32K2

External Clock

D
IV32

15-bit
prescaler

CLK_RTC

CNT

PER

CMP

=

=

Compare

Overflow

PIT

EXTCLK

Correction
counter

Period

CLKSEL

The RTC peripheral works in Idle and Standby sleep modes. A wide range of resolutions and time-out periods can be
configured for it. With a 32.768 kHz clock source, the maximum resolution is 30.5 μs, and time-out periods can be up
to two seconds. With a resolution of 1s, the maximum time-out period is more than 18 hours (65536 seconds).

The following code snippets show the initialization of RTC to generate interrupts with a 1-second periodicity (the
interrupt code is not included):

Example 2-16. AVR® Dx - RTC Initialization for 1s Periodic Interrupt

void RTC_0_init()
{
 while (RTC.STATUS > 0) { /* Wait for all register to be synchronized */
 }
 RTC.PER = 0x3FF; /* Period: 0x3FF - 1024 RTC clock cycles */
 RTC.CLKSEL = RTC_CLKSEL_OSC1K_gc; /* 32kHz divided by 32 */
 RTC.INTCTRL = 0 << RTC_CMP_bp /* Compare Match Interrupt enable:
disabled */
 | 1 << RTC_OVF_bp; /* Overflow Interrupt enable: enabled */
}

In addition to the RTC functionality, the RTC of the AVR Dx devices includes a Periodic Interrupt Timer (PIT) that can
run even in Power-Down mode. If enabled, it can generate an interrupt request on every 2n clock period, where n can
have any value from 2 to 15, selectable via the RTC.PITCTRLA register. This mode allows periodic interrupts/wake-
up from sleep when the device is in Power-Down mode.

Note:  For details about using the RTC and code examples, refer to TB3213 - Getting Started with RTC.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 19

http://microchip.com/DS90003213

2.7 SPI

2.7.1 Common Functionalities
The functionalities of the AVR Dx SPI peripheral in Host/Client mode are similar to ATmega128 when Normal mode is
used, but the register names and bit order can be different. The following table shows the mapping of the megaAVR
SPI configuration bits into the AVR Dx SPI register structure:

megaAVR® AVR® Dx Description

SPCR.DORD SPI.CTRLA.DORD SPI Data order

SPCR.MSTR SPI.CTRLA.MASTER Host/Client Select

SPCR.CPOL
SPI.CTRLB.MODE[1:0] SPI Mode Select

SPCR.CPHA

SPCR.SPR1
SPI.CTRLA.PRESC[1:0] SPI Clock Prescaler (divider)

SPCR.SPR0

SPSR.SPI2X SPI.CTRLA.CLK2X Clock Double

SPCR.SPE SPI.CTRLA.ENABLE SPI Enable

SPCR.SPIE SPI.INTCTRL.IE SPI Interrupt Enable

SPSR.SPIF SPI.INTFLAGS.IF SPI Interrupt Flag

SPSR.WCOL SPI.INTFLAGS.WRCOL Write Collision Flag

SPDR SPI.DATA SPI Data Register

Another difference between families is the I/O pin configuration for use with the SPI peripheral. The megaAVR needs
a proper configuration of used pins, while AVR Dx devices overwrite the I/O pin functionality when the pin is used by
the SPI peripheral. Refer to the 2.4.1.2 Pin Override section for details.

The following code snippets show initialization of the SPI peripheral in Host mode:

Example 2-17. megaAVR® - SPI Initialization in Host Mode

void SPI_MasterInit(void)
{
 /* Set MOSI and SCK output, all others input */
 DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);
 /* Enable SPI, Master, set clock rate fck/16 */
 SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);
}

void SPI_MasterTransmit(char cData)
{
 /* Start transmission */
 SPDR = cData;
 /* Wait for transmission complete */
 while(!(SPSR & (1<<SPIF)))
 ;
}

Example 2-18. AVR® Dx - SPI Initialization in Host Mode

void SPI0_init(void)
{
 PORTA.DIR &= ~PIN4_bm; /* Set MOSI pin direction to input */
 PORTA.DIR |= PIN5_bm; /* Set MISO pin direction to output */
 PORTA.DIR &= ~PIN6_bm; /* Set SCK pin direction to input */
 PORTA.DIR &= ~PIN7_bm; /* Set SS pin direction to input */

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 20

 SPI0.CTRLA = SPI_DORD_bm /* LSB is transmitted first */
 | SPI_ENABLE_bm /* Enable module */
 & (~SPI_MASTER_bm); /* SPI module in Client mode */
}

uint8_t SPI0_exchangeData(uint8_t data)
{
 SPI0.DATA = data;
 while (!(SPI0.INTFLAGS & SPI_IF_bm)) /* waits until data is exchanged*/
 {
 ;
 }
 return SPI0.DATA;
}

2.7.2 AVR® Dx Additional Features
The SPI peripheral of the AVR Dx families has support for data buffering, thus influencing the data handling. The
Buffer mode is enabled by writing the BUFEN bit in the SPIn.CTRLB register to ‘1’. There are additional bits in the
SPI.INTCTRL and SPI.INTFLAGS registers to support Buffer mode. Refer to the specific AVR Dx data sheet for
details.

Note:  For more details about using the SPI and code examples, refer to TB3215 - Getting Started with SPI.

2.8 USART

2.8.1 Common Functionality
The basic operation of USART is similar for both families, but the register and bit names are different. The AVR Dx
devices have an improved register structure that allows a more efficient access to the configuration/status bits.

The following section details the mapping of ATmega128 registers into AVR Dx register structure (only ATmega
registers and AVR Dx correspondences are figured):

megaAVR® AVR® Dx Description

RXBn (UDRn read) USARTn.RXDATAL Receiver Data Register Low Byte

TXBn (UDRn write) USARTn.TXDATAL Transmit Data Register Low Byte

UCSRnB.RXB8n USARTn.RXDATAH.DATA[8] Receive Data Bit 8

UCSRnB.TXB8n USARTn.TXDATAH.DATA[8] Transmit Data Bit 8

UCSRnB.UCSZn[2]
USARTn.CTRLC.CHSIZE[2:0](1) USART Character Size

UCSRnC.UCSZn[1:0]

UCSRnB.RXENn USARTn.CTRLC.RXEN Receiver Enable

UCSRnB.TXENn USARTn.CTRLC.TXEN Transmitter Enable

UCSRnB.RXCIENn USARTn.CTRLA.RXCIE RX Complete Interrupt Enable

UCSRnB.TXCIENn USARTn.CTRLA.TXCIE TX Complete Interrupt Enable

UCSRnB.UDRIENn USARTn.CTRLA.DREIE USART Data Register Empty Interrupt Enable

UCSRnA.RXCn USART.STATUS.RXCIF USART Receive Complete Flag

UCSRnA.TXCn USART.STATUS.TXCIF USART Transmit Complete Flag

UCSRnA.UDREn USART.STATUS.DREIF USART Data Register Empty Flag

UCSRnA.FEn USARTn.RXDATAH.FERR Framing Error

UCSRnA.DORn USARTn.RXDATAH.BUFOVF Data OverRun

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 21

https://www.microchip.com/DS90003215

...........continued
megaAVR® AVR® Dx Description

UCSRnA.UPEn USARTn.RXDATAH.PERR Parity Error

UCSRnA.U2Xn USARTn.CTRLB.RXMODE[1:0] = CLK2X Double the USART operation Speed

UCSRnA.MPCMn USARTn.CTRLB.MPCM Multi-Processor Communication mode

UCSRnC.UMSELn USARTn.CTRLC.CMODE[1:0](2) USART Mode Select

UCSRnC.UPMn[1:0] USARTn.CTRLC.PMODE[1:0] Parity Mode

UCSRnC.UBSn USARTn.CTRLC.SBMODE Stop Bit Mode

UCSRnC.UCPOLn USARTn.CTRLC.UCPHA(3) Clock Polarity (SYNC MODE)

UBRRn[11:0] USARTn.BAUD[15:0](4) Baud Rate registers

Notes: 
1. The settings are different for 9-bit operations.
2. ASYNCH and SYNCH modes only.
3. Only in Synchronous mode.
4. The baud rate formula is different. Refer to the device data sheet for details.

The following code snippets shows the initialization of the USART peripheral for both families:

Example 2-19. megaAVR® - USART Initialization (9600N1)

#define USART_BAUDRATE 9600
#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

void USART_Init(void){
 /* Set baud rate */
 UBRRL = BAUD_PRESCALE; /* Load lower 8 bits into the low byte
of the UBRR register */
 UBRRH = (BAUD_PRESCALE >> 8); /* Load upper 8 bits into the high byte
of the UBRR register */

 UCSRB = (1<<RXEN)|(1<<TXEN); /* Enable receiver and transmitter */
 UCSRC = (1<<USBS)|(3<<UCSZ0); /* Set frame format: 8data, 1 stop bit */
}

Example 2-20. AVR® Dx - USART Initialization (9600N1)

#define USART1_BAUD_RATE(BAUD_RATE) ((float)(64 * 4000000 / (16 *
(float)BAUD_RATE)) + 0.5)

void USART1_init(void)
{
 USART1.BAUD = (uint16_t)(USART1_BAUD_RATE(9600)); /* set the baud rate*/

 USART1.CTRLC = USART_CHSIZE0_bm
 | USART_CHSIZE1_bm; /* set the data format to 8-bit*/

 USART1.CTRLB |= USART_RXEN_bm | USART_TXEN_bm; /* enable receiver and
transmitter*/
}

2.8.2 AVR® Dx Additional Features
The AVR Dx devices contain an improved version of the USART peripheral with additional features like:

• Half-Duplex Operation (One-Wire and RS-485 Modes)
• Support Host SPI Mode

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 22

• Auto-Baud Feature (Generic and LIN)
• RCOM Module for IrDA® Compliant Communication

Note:  For details and additional examples, refer to TB3216 - Getting Started with USART.

2.9 TWI - Two-Wire Serial Interface
The TWI peripheral allows the systems designer to interconnect up to 128 individually addressable devices using
only two bidirectional bus lines: one for clock (SCL) and one for data (SDA). The functionality of the AVR Dx TWI
peripheral in Host/Client mode is similar to ATmega128 for basic operations, but the peripheral architecture, register
names, and bit order are different. Because of those differences, the software procedures that interact with the TWI
peripheral must be updated and tested during the integration phase.

The following code snippets show the usage of the TWI peripheral in Host mode:

Example 2-21. megaAVR® - TWI in Host Mode

/* Function to initialize master */
void TWI_init_master(void)
{
 /* SCL freq= F_CPU/(16+2(TWBR).4^TWPS) */
 TWBR = 0x01; // Bit rate
 TWSR = (0<<TWPS1)|(0<<TWPS0); /* Setting prescalar bits */
}

void TWI_start(void)
{
 /* Clear TWI interrupt flag, Put start condition on SDA, Enable TWI */
 TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);
 while (!(TWCR & (1<<TWINT))); /* Wait till start condition is transmitted
*/
 while ((TWSR & 0xF8)!= 0x08); /* Check for the acknowledgment */
}

void TWI_write_address(unsigned char data)
{
 TWDR = data; /* Address and write instruction */
 TWCR=(1<<TWINT)|(1<<TWEN); /* Clear TWI interrupt flag,Enable TWI */
 while (!(TWCR & (1<<TWINT))); /* Wait till complete TWDR byte transmitted
*/
 while ((TWSR & 0xF8)!= 0x18); /* Check for the acknowledgment */
}

void TWI_write_data(unsigned char data)
{
 TWDR = data; /* Put data in TWDR */
 TWCR=(1<<TWINT)|(1<<TWEN); /* Clear TWI interrupt flag,Enable TWI */
 while (!(TWCR & (1<<TWINT))); /* Wait till complete TWDR byte transmitted
*/
 while ((TWSR & 0xF8)!= 0x28); /* Check for the acknowledgment */
}

unsigned char TWI_read_data(void)
{
unsigned char recv_data;
 TWCR = (1<<TWINT)|(1<<TWEN); /* Clear TWI interrupt flag,Enable TWI */
 while (!(TWCR & (1<<TWINT))); /* Wait till complete TWDR byte
transmitted */
 while ((TWSR & 0xF8) != 0x58); /* Check for the acknowledgment */
 recv_data = TWDR;
 return recv_data;
}

void TWI_stop(void)
{
 /* Clear TWI interrupt flag, Put stop condition on SDA, Enable TWI */
 TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWSTO);
 while(!(TWCR & (1<<TWSTO))); /* Wait till stop condition is transmitted */
}

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 23

http://www.microchip.com/DS90003216

Example 2-22. AVR® Dx - TWI in Host Mode

void TWI0_init()
{
 TWI0.MBAUD = (uint8_t)TWI0_BAUD(100000, 0); /* set MBAUD register */
 TWI0.MCTRLA = 1 << TWI_ENABLE_bp /* Enable TWI Master: enabled */
 | 0 << TWI_QCEN_bp /* Quick Command Enable: disabled */
 | 0 << TWI_RIEN_bp /* Read Interrupt Enable: disabled */
 | 0 << TWI_SMEN_bp /* Smart Mode Enable: disabled */
 | TWI_TIMEOUT_DISABLED_gc /* Bus Timeout Disabled */
 | 0 << TWI_WIEN_bp; /* Write Interrupt Enable: disabled */
}

void TWI0_start(void)
{
 /* The start condition is generated by hardware, kept for compatibility */
}

static uint8_t TWI0_WaitW(void)
{
 uint8_t state = 0;
 do
 {
 if(TWI0.MSTATUS & (TWI_WIF_bm | TWI_RIF_bm))
 {
 if(!(TWI0.MSTATUS & TWI_RXACK_bm))
 {
 /* slave responded with ack - TWI goes to M1 state */
 state = I2C_ACKED;
 }
 else
 {
 /* address sent but no ack received - TWI goes to M3 state */
 state = I2C_NACKED;
 }
 }
 else if(TWI0.MSTATUS & (TWI_BUSERR_bm | TWI_ARBLOST_bm))
 {
 /* get here only in case of bus error or arbitration lost - M4
state */
 state = I2C_ERROR;
 }
 } while(!state);
 return state;
}

uint8_t TWI0_write_address(uint8_t address)
{
 uint8_t state = 0;
 TWI0.MADDR = address; /* Transmitting the slave address */
 state = TWI0_WaitW(); /* wait for error code */
 return state;
}

uint8_t TWI0_write_data(uint8_t data)
{
 uint8_t state = 0;
 TWI0.DATA = data; /* Transmitting the data */
 state = TWI0_WaitW(); /* wait for error code */
 return state;
}

static uint8_t TWI0_WaitR(void)
{
 uint8_t state = I2C_INIT;
 do
 {
 if(TWI0.MSTATUS & (TWI_WIF_bm | TWI_RIF_bm))
 {
 state = I2C_READY;
 }
 else if(TWI0.MSTATUS & (TWI_BUSERR_bm | TWI_ARBLOST_bm))
 {
 /* get here only in case of bus error or arbitration lost - M4
state */

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 24

 state = I2C_ERROR;
 }
 } while(!state);
 return state;
}

uint8_t TWI0_read_data(uint8_t* data, bool last_byte)
{
 uint8_t state;
 state = TWI0_WaitR();
 if(state == I2C_READY)
 {
 *data = TWI0.DATA;
 if (last_byte) TWI0.MCTRLB = TWI_ACKACT_bm | TWI_MCMD_STOP_gc;
 else TWI0.MCTRLB = TWI_MCMD_RECVTRANS_gc;
 }
 return state;
}

void TWI0_stop(void)
{
 TWI0.MCTRLB |= TWI_MCMD_STOP_gc;
}

2.9.1 AVR® Dx Additional Features
The TWI peripheral of the AVR Dx families is equipped with an improved version of the TWI peripheral, providing
support for a new set of features like:

• SMBus
• Multi-Host
• Smart Mode
• Dual Mode
• 10-bit Address
• Quick Command Mode

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 25

2.10 AC - Analog Comparator
The Analog Comparator (AC) of the megaAVR devices has different register sets and limited features compared to
the AVR Dx devices. The positive input of the megaAVR Analog Comparator is selectable between the external pin
(AIN0) and the internal reference (fixed, 1.23V typical) using the ACBG bit from the ACSR register, while the negative
one can be selected between the dedicated external pin (AIN1) and the ADC input pins using the Analog Comparator
Multiplexer Enable (ACME) bit in the SFIOR register. When the ACME bit is set and the ADC is switched off (the
ADEN bit in the ADCSRA register is zero), the MUX[2..0] bit field in the ADMUX register selects the input pin to
replace the negative input to the Analog Comparator.

Figure 2-8. Analog Comparator Block Diagram for megaAVR® Devices

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

The AVR Dx devices provide a larger selection for positive and negative inputs, using the ACn.MUXCTRL register.
Each Analog Comparator is equipped with a dedicated multiplexer, thus allowing unrestricted use of the available
analog inputs. A dedicated internal voltage reference (VREF) is provided for the Analog Comparator. Additionally, each
comparator is equipped with an on-chip 8-bit DAC for a precise selection of the reference voltage (DACREF):

Figure 2-9. Analog Comparator Block Diagram for AVR® Dx Devices

+

AC
-

H
ys

te
re

si
s

AINN0

AINNn

In
ve

rt

En
ab

le

AINP0

Controller
logic

Voltage
divider

AINPn

...

...

CTRLA
MUXCTRLDACREF

VREF

CMP

OUT

Event out

From ACn

(Int. req.)

Despite those differences, the functionality for the megaAVR AC can be obtained by a proper configuration of the AC
peripheral of AVR Dx. The following code example shows the initialization of the AC peripheral for both families (input
compare with a fixed voltage reference):

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 26

Example 2-23.  megaAVR® - AC Basic Initialization

#define AINpin PA3
void ACInit(void)
{
 DDRA &=~(1<<AINpin); /* set pin as input */
 PORTA &=~(1<<AINpin); /* no pull-up */
 SFIOR |= (1<<ACME); /* enable multiplexer */
 ADCSRA &= ~(1<<ADEN); /* make sure ADC is OFF */
 ADMUX |=(0<<MUX2)|(1<<MUX1)|(1<<MUX0); /* select ADC3 as negative AIN */
 ACSR |= (0<<ACD)| /* Comparator ON */
 (1<<ACBG)| /* Connect 1.23V reference to AIN0 */
 (0<<ACIE)| /* Comparator Interrupt disabled */
 (0<<ACIC)| /* input capture disabled */
 (0<<ACIS1)|
 (0<<ACIS0);
}

Example 2-24.  AVR® Dx - AC Basic Initialization

/* set DACREF to 1.23 Volts for VREF = 1.5 Volts */
#define DACREF_VALUE (1.23 * 256 / 1.5)

void AC0_init(void)
{
 /* Positive Input - Disable digital input buffer */
 PORTD.PIN2CTRL = PORT_ISC_INPUT_DISABLE_gc;

 /* Negative input uses internal reference - voltage reference must be
enabled */
 VREF.CTRLA = VREF_AC0REFSEL_1V5_gc; /* Voltage reference at 1.5V */
 VREF.CTRLB = VREF_AC0REFEN_bm; /* AC0 DACREF reference enable:
enabled */

 AC0.DACREF = DACREF_VALUE; /* Set DAC voltage reference */
 /*Select proper inputs for comparator*/
 AC0.MUXCTRLA = AC_MUXPOS_PIN0_gc /* Positive Input - Analog
Positive Pin 0 */
 | AC_MUXNEG_DACREF_gc; /* Negative Input - DAC Voltage
Reference */

 AC0.CTRLA = AC_ENABLE_bm /* Enable Analog Comparator */
 | AC_OUTEN_bm; /* Output Buffer Enable: enabled
*/
 }

2.10.1 AVR® Dx Additional Features
The AVR Dx devices provide up to three Analog Comparators, each two of them configurable in Window mode. In
Window mode, a voltage window can be defined, and the selected comparator indicates whether an input signal is
within this range or not.

The devices are equipped with a voltage reference for Analog Comparators, selectable via the Voltage Reference
(VREF) peripheral (the same value will apply to all ACs in the device). Each comparator is equipped with an
additional 8-bit DAC that allows a fine adjusting of the voltage reference levels.

To improve noise immunity, the hysteresis feature is available using the HYSMODE[1:0] bit field in the ACn.CTRLA
register. This feature has selectable levels and helps prevent constant toggling of the output when the noise-afflicted
input signals are close to each other.

Note:  For additional information and code examples, refer to TB3211 - Getting Started with AC.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 27

http://microchip.com/DS90003211

2.11 ADC - Analog-to-Digital Converter

2.11.1 megaAVR® Devices
The Analog-to-Digital Converter (ADC) of the megaAVR devices has different register sets and limited features
compared to the AVR Dx devices. Due to those differences, the migrated software must be fully tested and validated
to ensure similar functionality on both families.

For the megaAVR devices, the ADC has a 10-bit resolution and a sample rate of up to 15 ksps. The ADC is
connected to an 8-channel Analog Multiplexer, which allows eight single-ended voltage inputs constructed using the
pins of Port A. The device also supports 16 differential voltage input combinations, two of them being equipped with a
programmable gain stage. The input configuration is selected using the Analog Channel and Gain Selection bit field
in the ADC Multiplexer Selection (ADMUX) register.

The ADC has the option for internal or external references, selectable using the Reference Selection (REFS) bit field
in the ADMUX register. The internal voltage reference can be selected between on-chip 2.56V fixed voltage or the
AVCC pin and is available on the AREF pin for decoupling when used. Therefore, the internal voltage reference
cannot be used if an external reference voltage is being applied to the AREF pin.
Figure 2-10. megaAVR® - ADC Block Diagram

ADC CONVERSION
COMPLETE IRQ

8-BIT DATA BUS

15 0
ADC MULTIPLEXER

SELECT (ADMUX)
ADC CTRL & STATUS
(ADCSRA) REGISTER

ADC DATA (ADCH/ADCL)

M
U

X2

AD
IE

AD
AT

E

AD
SC

AD
EN

AD
IF

AD
IF

M
U

X1

M
U

X0

AD
PS

0

AD
PS

1

AD
PS

2

M
U

X3

CONVERSION LOGIC

10-BIT DAC
+
-

SAMPLE & HOLD
COMPARATOR

INTERNAL
REFERENCE

MUX DECODER

AVCC

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

R
EF

S0

R
EF

S1

AD
LA

R

C
H

AN
N

EL
 S

EL
EC

TI
O

N

AD
C

[9
:0

]

ADC MULTIPLEXER
OUTPUT

AREF

BAND GAP
REFERENCE

PRESCALER

AGND

M
U

X4

+

-

SINGLE ENDED / DIFFERENTIAL SELECTION

POS.
INPUT
MUX

NEG.
INPUT
MUX

TRIGGER
SELECT

ADTS[2:0]

INTERRUPT
FLAGS

START

REGISTER REGISTER

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 28

2.11.2 AVR® Dx Devices
The ADC of AVR Dx devices has a 12-bit resolution and a sample rate of up to 130 ksps. Its multiple internal and
external inputs can be used in Single or Differential mode, selectable using the Conversion Mode (CONVM) bit in the
Control A (ADCn.CTRLA) register. Unlike the megaAVR devices, in the Differential mode, any combination of
available positive and negative inputs is allowed and can be configured using the Multiplexer Selection (MUXPOS
and MUXNEG) registers.

The ADC voltage reference is also improved, a dedicated voltage reference (VREF) being available. This reference is
selectable using the ADC0 Reference (ADC0REF) register of the Voltage Reference (VREF) peripheral.
Figure 2-11. AVR® Dx - ADC Block Diagram

RES

ACC

Result ready
(IRQ)

>
<

WINLT
WINHT

Window compare
(IRQ)Control Logic

MUXPOS

EVCTRL
COMMAND

ADC

Internal
Inputs

Result
formatting

MUXNEG

...

AIN0

AIN1

AINn

...

AIN0

AIN1

AINn

Internal
Inputs

CTRLA

VAINP

VAINN

VADCREF

AVDD

VREFA

Internal Reference

VREF

The following code shows the ADC initialization in Single-Ended mode, internal voltage reference:

Example 2-25. megaAVR® - ADC Initialization in Single-Ended Mode

void ADC_Init(void)
{
 /* Set ADC prescalar to 128 */
 ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);

 /* Set ADC reference to 2.56V internal reference */
 ADMUX |= (1 << REFS0);
 /* Left adjust ADC result to allow easy 8-bit reading */
 ADMUX |= (1 << ADLAR);

 // No MUX values needed to be changed to use ADC0 input

 ADCSRA |= (1 << ADFR); /* Set ADC to Free-Running mode */
 ADCSRA |= (1 << ADEN); /* Enable ADC */
 ADCSRA |= (1 << ADSC); /* Start A2D conversions */
}

Example 2-26. AVR® Dx - ADC Initialization in Single-Ended Mode

void ADC0_init(void)
{
 /* Disable digital input buffer */
 PORTD.PIN0CTRL &= ~PORT_ISC_gm;
 PORTD.PIN0CTRL |= PORT_ISC_INPUT_DISABLE_gc;

 /* Disable pull-up resistor */
 PORTD.PIN0CTRL &= ~PORT_PULLUPEN_bm;

 ADC0.CTRLC = ADC_PRESC_DIV4_gc /* CLK_PER divided by 4 */

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 29

 | ADC_REFSEL_INTREF_gc; /* Internal reference */

 ADC0.CTRLA = ADC_ENABLE_bm /* ADC Enable: enabled */
 | ADC_RESSEL_12BIT_gc; /* 12-bit mode */

 ADC0.MUXPOS = ADC_MUXPOS_AIN0_gc; /* Select ADC channel 0*/
 ADC0.CTRLA |= ADC_FREERUN_bm; /* Enable Free-Running mode */
 ADC0.COMMAND = ADC_STCONV_bm; /* Start conversion */
}

2.11.3 AVR® Dx - Additional Features
In addition to the megaAVR features, the ADC of AVR Dx devices provides other features like:

• Accumulation of up to 128 Samples per Conversion
• On-Chip Temperature Sensor Channel
• Programmable Input Sampling Duration
• Configurable Threshold and Window Comparator
• Event-Triggered Conversion

Note:  For more details and code examples, refer to TB3209 - Getting Started with ADC.

2.12 WDT - Watchdog Timer
Both families are equipped with a Watchdog Timer (WDT) peripheral, but the feature and register sets are different.
Thus, the software procedures that configure the megaAVR WDT operation must be fully replaced to support AVR Dx
devices.

The watchdog of the megaAVR devices is clocked from an on-chip oscillator that runs at 1 MHz. The Watchdog
Reset interval is selectable from 16 ms to 2.2 seconds using the Watchdog Timer Prescaler (WDP[2:0]) bits in the
Watchdog Timer Control (WDTCTRL) register.

Figure 2-12. megaAVR® - WDT Block Diagram

WATCHDOG
OSCILLATOR

For the AVR Dx devices, the Watchdog module is improved and has an additional set of features. It operates
asynchronously from the peripheral clock using an independent oscillator. It is clocked from an on-chip ultra-low
power oscillator for improved power consumption and provides 11 selectable time-out intervals from 16 ms up to 8
seconds.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 30

http://microchip.com/DS90003209

Figure 2-13. AVR® Dx - WDT Block Diagram

CTRLA

 COUNT =

>

CLK_WDT

WDR
(Instruction)

WINDOW

PERIOD System
Reset

+
Closed
window

Time-out

The WDT for both families has a write protection mechanism ensuring the WDT settings cannot be changed by
accident. The following code examples show the Watchdog disable procedures:

Example 2-27. megaAVR® - Watchdog Disable Code Example

void WDT_off(void)
{
 /* Reset WDT*/
 _WDR();
 /* Write logical one to WDTOE and WDE */
 WDTCR |= (1<<WDTOE) | (1<<WDE);
 /* Turn off WDT */
 WDTCR = 0x00;
}

Example 2-28. AVR® Dx - Watchdog Disable Code Example

void WDT_0_off(void)
{
 /* Reset WDT */
 asm("WDR");
 /* Disable WDT */
 ccp_write_io((void *)&(WDT.CTRLA),
 WDT_PERIOD_OFF_gc /* Off */
 | WDT_WINDOW_OFF_gc /* Off */);
}

2.12.1 AVR® Dx Additional Features
The AVR Dx devices have the option to configure the watchdog functionality using Watchdog Config (WDTCFG)
fuses. This option ensures the WDT can be configured to run immediately after Reset without software support but
not eliminate the need for the Watchdog Reset (WDR) instruction. The software must periodically run the WDR
instruction to avoid a system reset triggered by the WDT.

Note:  The configuration of the WDT cannot be modified by software if it is enabled from fuses (the LOCK bit in the
WDT.STATUS register is set automatically). Refer to the AVR Dx devices data sheet for details.

In addition to the normal operation, the AVR Dx watchdog has a Window mode. The Window mode defines a time
slot or window inside the time-out period during which the WDT must be reset. If the WDT is reset outside this
window, either too early or too late, a system Reset will be issued. Compared to the normal operation, the Window
mode can catch situations where a code error causes constant WDR execution.

 Migration Guide
Common Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 31

3. AVR® Dx - Additional Peripherals

3.1 Overview
The AVR Dx families are equipped with additional peripherals that replace the need for external hardware
components in some applications. Those components allow a more compact design, lowering the cost and power
consumption.

Table 3-1. AVR® Dx - Additional peripherals

Peripherals/Features AVR® DA Family AVR® DB Family

Digital-to-Analog Converter (DAC) 1 (10 bits) 1 (10 bits)

Configurable Custom Logic (CCL) 6 LUTs 6 LUTs

Event System (EVSYS) 1 (10 channels) 1 (10 channels)

Cyclic Redundancy Check (CRCSCAN) 1 1

Zero-Cross Detector (ZCD) 3 3

Peripheral Touch Controller (PTC) 1 -

Multi-Voltage I/O (MVIO) - 1

Analog Signal Conditioning (OPAMP) - 3

3.2 DAC - Digital-to-Analog Converter
The AVR Dx devices are equipped with a 10-bit Digital-to-Analog Converter (DAC) that can run up to 140 ksps
conversion rate. The output range is between GND and selected voltage reference and can be available on an
external pin or to be used by other internal peripherals (like ADC).

Figure 3-1. AVR® Dx - DAC Block Diagram

DACDATA Output
Buffer

CTRLA

ENABLE

OUTEN

VREF

Peripherals
Other

OUT

The analog output of the DAC can be connected to a pin by writing a ‘1’ to the Output Buffer Enable (OUTEN) bit in
the Control A (DACn.CTRLA) register. The pin used by the DAC must have the input disabled from the Port
peripheral. There is an output buffer between the DAC output and the pin, which ensures the analog value does not
depend on the load of the pin. The output buffer can only source current, and it has very limited sinking capability.

The following code snippets show the initialization code for DAC to generate a fixed voltage on the DAC analog
output pin:

 Migration Guide
AVR® Dx - Additional Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 32

Example 3-1. AVR® Dx - DAC Initialization to Generate Fixed Voltage

/* DAC Value */
#define DAC_EXAMPLE_VALUE (0x258)
/* Mask needed to get the 2 LSb for DAC Data Register */
#define LSB_MASK (0x03)

void DAC0_init(void)
 {
 VREF.DAC0REF = VREF_REFSEL_2V048_gc /* Select the 2.048V Internal Voltage
Reference for DAC */
 | VREF_ALWAYSON_bm; /* Set the Voltage Reference in Always
On mode */
 /* Disable digital input buffer */
 PORTD.PIN6CTRL &= ~PORT_ISC_gm;
 PORTD.PIN6CTRL |= PORT_ISC_INPUT_DISABLE_gc;
 /* Disable pull-up resistor */
 PORTD.PIN6CTRL &= ~PORT_PULLUPEN_bm;
 DAC0.CTRLA = DAC_ENABLE_bm /* Enable DAC */
 | DAC_OUTEN_bm /* Enable output buffer */
 | DAC_RUNSTDBY_bm; /* Enable Run in Standby mode */

 /* Store the two LSbs in DAC0.DATAL */
 DAC0.DATAL = (DAC_EXAMPLE_VALUE & LSB_MASK) << 6;
 /* Store the eight MSbs in DAC0.DATAH */
 DAC0.DATAH = DAC_EXAMPLE_VALUE >> 2;
 }

Note:  For code examples and more details about using the DAC peripheral, refer to TB3235 - Using 10-bit DAC for
generating Analog Signals.

3.3 CCL - Configurable Custom Logic
The Configurable Custom Logic (CCL) is a programmable logic peripheral that can be connected to the device pins,
events, or other internal peripherals. The CCL can serve as ‘glue logic’ between the device peripherals and external
devices. The CCL can eliminate the need for external logic components and can also help the designer to overcome
real-time constraints by combining Core Independent Peripherals (CIPs) to handle the most time-critical parts of the
application independent of the CPU.

Note:  For details about using the CCL peripheral and code examples, refer to the Custom Logic on PIC® and AVR®

Microcontrollers webpage.

3.4 EVSYS - Event System
The Event System (EVSYS) is a routing network enabling inter-peripheral communication without involving the CPU.
It allows a change in one peripheral (the event generator) to trigger actions in other peripherals (the event users)
through event channels, without using the CPU. Events are latency-free and never lost, providing fast and predictable
signaling, enabling a deterministic system ideal for real-time applications. It allows for autonomous peripheral control
and interaction and synchronized timing of actions in several peripheral modules. Thus, it is a powerful tool for
reducing the complexity, size, and execution time of the software.

Note:  For details about using the EVSYS peripheral and code examples, refer to the Event System (EVSYS)
webpage.

3.5 CRCSCAN - Cyclic Redundancy Check Memory Scan
The AVR Dx devices provide a Cyclic Redundancy Check mechanism, which is an important safety feature. By
ensuring no code corruption has occurred, a potentially unintended behavior in the application that can cause a
dangerous situation can be avoided.

 Migration Guide
AVR® Dx - Additional Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 33

http://microchip.com/DS90003235
http://microchip.com/DS90003235
https://www.microchip.com/design-centers/8-bit/peripherals/core-independent/configurable-logic-cell
https://www.microchip.com/design-centers/8-bit/peripherals/core-independent/configurable-logic-cell
https://www.microchip.com/design-centers/8-bit/peripherals/core-independent/event-system

The CRCSCAN peripheral scans the Nonvolatile Memory (NVM), making sure the code is not corrupted. It generates
a checksum that is compared to a pre-calculated one. If the two checksums match, the Flash is OK, and the
application code can start running.

Note:  For details about using the CRCSCAN peripheral and code examples, refer to the Cyclic Redundancy Check
(CRC/SCAN) webpage.

3.6 ZCD - Zero-Cross Detector
The Zero-Cross Detector (ZCD) detects when an alternating voltage crosses through a threshold voltage near the
ground potential. The ZCD can be used when monitoring an alternating waveform for, but not limited to, the following
purposes:

• Period Measurement
• Accurate Long-Term Time Measurement
• Dimmer Phase-Delayed Drive
• Low-EMI Cycle Switching

Figure 3-2. AVR® Dx - ZCD Block Diagram
Zero-Cross Detector

-

+

INVERT
Controller

logic
OUT

CROSS
(INT Req.)

VDD

VPULLUP

Optional

RPULLUP

RPULLDOWN

Optional

RSERIES

External
voltage
source

ZCIN

ZCPINV

To detect zero-crossing, it requires only a current limiting resistor in series (RSERIES), thus simplifying the design.

Note:  For code examples and details about using the ZCD peripheral, refer to TB3233 - Using ZCD to Implement
Special Functions.

3.7 PTC - Peripheral Touch Controller
The Peripheral Touch Controller (PTC) is a dedicated peripheral to detect a touch on capacitive sensors. The external
capacitive touch sensor is typically formed on a PCB or a transparent substrate with a transparent or translucent
material such as indium tin oxide (ITO) or PEDOT. The PTC allows the design of robust touch solutions with low-
power, high-sensitivity for a large variety of sensors (buttons, sliders, wheels or 2D surfaces) without using external
components.

The sensor electrodes are connected directly to the analog front end of the PTC through the I/O pins in the device.
The dedicated hardware and the QTouch® software library allow low CPU utilization and faster development of touch
solutions.

 Migration Guide
AVR® Dx - Additional Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 34

https://www.microchip.com/design-centers/8-bit/peripherals/core-independent/cyclic-redundancy-check
https://www.microchip.com/design-centers/8-bit/peripherals/core-independent/cyclic-redundancy-check
http://microchip.com/DS90003233
http://microchip.com/DS90003233
http://www.microchip.com/DS40001986

The PTC supports both mutual and self-capacitance sensors. In Mutual Capacitance mode, sensing is done using
capacitive touch matrices in various X-Y configurations. The PTC requires one pin per X-line and one pin per Y-line:

Figure 3-3. AVR® Dx - PTC Block Diagram in Mutual Capacitance Mode

Compensation
Circuit

IRQ

Result

Y0

Y1

Ym

X0

X1

Xn

X-Line Driver

Input
Control

10

CX0Y0

CXnYm

Acquisition Module
-ADC
-Accumulation
-Filtering

RS

In Self-Capacitance mode, the PTC requires one pin (Y-line) for each touch sensor:
Figure 3-4. AVR® Dx - PTC Block Diagram in Self-Capacitance Mode

Compensation
Circuit

IRQ

Result

Y0

Y1

Ym

Input
Control

10

CY0

CYm

Shield Driver

Acquisition Module
-ADC
-Accumulation
-Filtering

RS

3.8 MVIO - Multi-Voltage I/O
The MVIO feature allows a subset of the I/O pins to be powered by a different I/O voltage domain than the rest of the
I/O pins. This eliminates the need to have external level shifters for communication or control of external components

 Migration Guide
AVR® Dx - Additional Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 35

running on a different voltage level. Eliminating external logic level shifters will, in turn, reduce the BOM and free up
PCB space.

Figure 3-5. Multi-Voltage I/O Replacing External Logic Level Converters

VDD
1.8-5.5V

VDD VDD VDDIO2

GND GND GND

GNDGND

VDDIO2
1.8-5.5V

Microcontroller
Logic
Level

Converter

Sensor M
V
IO

SensorSensor

Sensor

Note:  For more details and code example, refer to TB3287 - Getting Started with MVIO.

3.9 OPAMP - Analog Signal Conditioning
The Analog Signal Conditioning (OPAMP) peripheral features up to three operational amplifiers (op amps). These op
amps are implemented with a flexible connection scheme using analog multiplexers and resistor ladders. This allows
a large number of analog signal conditioning configurations to be achieved, many of which require no external
components.

A multiplexer at the non-inverting (+) input of each op amp allows the connection to either an external pin, a wiper
position from a resistor ladder, a DAC output, ground, VDD/2, or an output from another op amp. A second multiplexer
at the inverting (-) input of each op amp allows connection to either an external pin, a wiper position from a resistor
ladder, the output of the op amp, or DAC output. Three more multiplexers connected to each resistor ladder provide
additional configuration flexibility. Two of these multiplexers select the top and bottom connections to the resistor
ladder, and the third controls the wiper position.

 Migration Guide
AVR® Dx - Additional Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 36

https://microchip.com/DS90003287

Figure 3-6. Op Amp Block Diagram

OPn

GND
VDD/2

*

OPnOUT

OPnINN

OPnINP
OPnINN

DAC

*

CTRLA.ENABLE

OPnINP

DAC

R2

R1

+

-

OPnCTRLA.OUTMODE

VDD

OPnRESMUX.MUXTOP

OPnRESMUX.MUXBOT

OPnRESMUX.MUXWIP

OPnINMUX.MUXPOS

OPnINMUX.MUXNEG

DAC

*

GND

Output
Driver

OPnWIP

OPnOUT

* Additional internal analog signals -- see OPnINMUX
 and OPnRESMUX register descriptions for details

Note:  For code examples and details about using the OPAMP peripheral, refer to TB3286 - Getting Started with
Analog Signal Conditioning (OPAMP).

 Migration Guide
AVR® Dx - Additional Peripherals

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 37

https://microchip.com/DS90003286
https://microchip.com/DS90003286

4. References
• ATmega128 Data Sheet
• AVR128DA64 Data Sheet
• AVR128DB64 Data Sheet

Additional documents can be found at www.microchip.com.

 Migration Guide
References

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 38

http://ww1.microchip.com/downloads/en/devicedoc/doc2467.pdf
http://microchip.com/DS40002183
http://microchip.com/DS40002247
http://www.microchip.com

5. Revision History
Doc. Rev. Date Comments

A 11/2020 Initial document release

 Migration Guide
Revision History

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 39

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 Migration Guide

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 40

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-
Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7079-3

 Migration Guide

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 41

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 Migration Guide

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 42

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Application Note DS00003731A-page 43

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Relevant Devices
	2. Common Peripherals
	2.1. Common Peripherals
	2.2. System
	2.2.1. CPU
	2.2.2. Interrupts
	2.2.3. Clock Sources

	2.3. Memories
	2.3.1. In-System Programmable Flash Memory and Bootloader Support
	2.3.2. SRAM and EEPROM Memories

	2.4. I/O Ports and Pinouts
	2.4.1. Common Functionalities
	2.4.1.1. GPIO Basic Functionality
	2.4.1.2. Pin Override
	2.4.1.3. Pull-Up Option

	2.4.2. AVR® Dx Additional Features
	2.4.2.1. Direct Pin Configuration
	2.4.2.2. Virtual Ports
	2.4.2.3. Multipin Configuration
	2.4.2.4. PORTMUX

	2.5. Timers
	2.5.1. TCA - Timer/Counter Type A
	2.5.1.1. Normal Mode (Counter Mode)
	2.5.1.2. Waveform Generation Modes

	2.5.2. TCB - Timer/Counter Type B
	2.5.2.1. TCB in Input Capture on Event Mode
	2.5.2.2. TCB in Input Capture for Frequency Measurement Mode
	2.5.2.3. TCB in Single-Shot Mode

	2.5.3. TCD - Timer/Counter Type D

	2.6. RTC - Real-Time Counter
	2.7. SPI
	2.7.1. Common Functionalities
	2.7.2. AVR® Dx Additional Features

	2.8. USART
	2.8.1. Common Functionality
	2.8.2. AVR® Dx Additional Features

	2.9. TWI - Two-Wire Serial Interface
	2.9.1. AVR® Dx Additional Features

	2.10. AC - Analog Comparator
	2.10.1. AVR® Dx Additional Features

	2.11. ADC - Analog-to-Digital Converter
	2.11.1. megaAVR® Devices
	2.11.2. AVR® Dx Devices
	2.11.3. AVR® Dx - Additional Features

	2.12. WDT - Watchdog Timer
	2.12.1. AVR® Dx Additional Features

	3. AVR® Dx - Additional Peripherals
	3.1. Overview
	3.2. DAC - Digital-to-Analog Converter
	3.3. CCL - Configurable Custom Logic
	3.4. EVSYS - Event System
	3.5. CRCSCAN - Cyclic Redundancy Check Memory Scan
	3.6. ZCD - Zero-Cross Detector
	3.7. PTC - Peripheral Touch Controller
	3.8. MVIO - Multi-Voltage I/O
	3.9. OPAMP - Analog Signal Conditioning

	4. References
	5. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

